Aki Vehtari
Associate Professor at Aalto University School of Business
Biography
Aalto University School of Business
I'm co-leader of the Probabilistic Machine Learning Group. We develop new methods for probabilistic modeling, Bayesian inference and machine learning. Our current focuses are in particular probabilistic programming, learning from multiple data sources, Bayesian model assessment and selection, approximate inference and information visualization. Our primary application areas are digital health and biology, neuroscience and user interaction.
Peer-reviewed scientific articles
Journal article-refereed, Original researchExpectation propagation as a way of life: A framework for Bayesian inference on partitioned data
Gelman, Andrew; Vehtari, Aki; Jylänki, Pasi; Sivula, Tuomas; Tran, Dustin; Sahai, Swupnil; Blomstedt, Paul; Cunningham, John P.; Schiminovich, David; Robert, Christian2017 in STATISTICAL SCIENCE (Institute of Mathematical Statistics)ISSN: 0883-4237Effect of KIT and PDGFRA mutations on survival in patients with gastrointestinal stromal tumors treated with adjuvant imatinib An exploratory analysis of a randomized clinical trial
Joensuu, Heikki; Wardelmann, Eva; Sihto, Harri; Eriksson, Mikael; Sundby Hall, Kirsten; Reichardt, Annette; Hartmann, Jörg T.; Pink, Daniel; Cameron, Silke; Hohenberger, Peter; Al-Batran, Salah-Eddin; Schlemmer, Marcus; Bauer, Sebastian; Nilsson, Bengt; Kallio, Raija; Junnila, Jouni; Vehtari, Aki; Reichardt, Peter2017 in JAMA Oncology (American Medical Association)ISSN: 2374-2437Nudged elastic band calculations accelerated with Gaussian process regression
Koistinen, Olli-Pekka; Dagbjartsdóttir, Freyja B.; Ásgeirsson, Vilhjálmur; Vehtari, Aki; Jonsson, Hannes2017 in JOURNAL OF CHEMICAL PHYSICS (AMER INST PHYSICS)ISSN: 0021-9606ELFI: Engine for Likelihood-Free Inference
Lintusaari, Jarno; Vuollekoski, Henri; Kangasrääsiö, Antti; Skyten, Kusti; Järvenpää, Marko; Gutmann, Michael; Vehtari, Aki; Corander, Jukka; Kaski, Samuel2017 in Submitted (AMER INST PHYSICS)Sparsity information and regularization in the horseshoe and other shrinkage priors
Piironen, Juho; Vehtari, Aki2017 in Submitted (AMER INST PHYSICS)Comparison of Bayesian predictive methods for model selection
Piironen, Juho; Vehtari, Aki2017 in STATISTICS AND COMPUTING (Springer Netherlands)ISSN: 0960-3174SLUG transcription factor A pro-survival and prognostic factor in gastrointestinal stromal tumour
Pulkka, Olli Pekka; Nilsson, Bengt; Sarlomo-Rikala, Maarit; Reichardt, Peter; Eriksson, Mikael; Hall, Kirsten Sundby; Wardelmann, Eva; Vehtari, Aki; Joensuu, Heikki; Sihto, Harri2017 in BRITISH JOURNAL OF CANCER (Nature Publishing Group)ISSN: 0007-0920Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex
Salmi, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Jylänki, Pasi; Vehtari, Aki; Jääskeläinen, Iiro; Mäkelä, Sasu; Nummenmaa, Lauri; Nummi-Kuisma, Katarina; Nummi, Ilari; Sams, Mikko2017 in NEUROIMAGE (ACADEMIC PRESS INC ELSEVIER SCIENCE)ISSN: 1053-8119Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Vehtari, Aki; Gelman, Andrew; Gabry, Jonah2017 in STATISTICS AND COMPUTING (Springer Netherlands)ISSN: 0960-3174Minimum energy path calculations with Gaussian process regression
Koistinen, Olli-Pekka; Maras, Emile; Vehtari, Aki; Jonsson, Hannes2016 in Nanosystems: Physics, Chemistry, Mathematics (Springer Netherlands)ISSN: 2220-8054Cost-effectiveness of providing patients with information on managing mild low-back symptoms in an occupational health setting
Rantonen, Jarmo; Karppinen, J.; Vehtari, A.; Luoto, S.; Viikari-Juntura, E.; Hupli, M.; Malmivaara, A.; Taimela, S.2016 in BMC PUBLIC HEALTH (BIOMED CENTRAL LTD)ISSN: 1471-2458Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models
Vehtari, Aki; Mononen, Tommi; Tolvanen, Ville; Sivula, Tuomas; Winther, Ole2016 in JOURNAL OF MACHINE LEARNING RESEARCH (MICROTOME PUBL)ISSN: 1532-4435The current duration design for estimating the time to pregnancy distribution: a nonparametric Bayesian perspective
Gasbarra, Dario; Arjas, Elja; Vehtari, Aki; Slama, Remy; Keiding, Niels2015 in LIFETIME DATA ANALYSIS (Springer Netherlands)ISSN: 1380-7870Quantitative p95HER2 and HER2 correlations with outcome in the FinHer trial
Sperinde, Jeff; Huang, Weidong; Vehtari, Aki; Chenna, Ahmed; Kellokumpu-Lehtinen, Pirkko-Liisa; Winslow, John; Bono, Petri; Lie, Yolanda; Weidler, Jodi; Joensuu, Heikki2015 in CANCER RESEARCH (American Association for Cancer Research Inc.)ISSN: 0008-5472Estimation and Accuracy after Model Selection Comment
Gelman, Andrew; Vehtari, Aki2014 in JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION (AMER STATISTICAL ASSOC)ISSN: 0162-1459Comment
Gelman, Andrew; Vehtari, Aki2014 in JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION (AMER STATISTICAL ASSOC)ISSN: 0162-1459Understanding predictive information criteria for Bayesian models
Gelman, Andrew; Hwang, Jessica; Vehtari, Aki2014 in STATISTICS AND COMPUTING (Springer Netherlands)ISSN: 0960-3174Gastrointestinal Stromal Tumor: A Method for Optimizing the Timing of CT Scans in the Follow-up of Cancer Patients
Joensuu, Heikki; Reichardt, Peter; Eriksson, Mikael; Hall, Kirsten Sundby; Vehtari, Aki2014 in RADIOLOGY (Radiological Society of North America Inc.)ISSN: 0033-8419Expectation Propagation for Neural Networks with Sparsity-Promoting Priors
Jylanki, Pasi; Nummenmaa, Aapo; Vehtari, Aki2014 in JOURNAL OF MACHINE LEARNING RESEARCH (MICROTOME PUBL)ISSN: 1532-4435Hierarchical second-order analysis of replicated spatial point patterns with non-spatial covariates
Myllymäki, Mari; Särkkä, Aila; Vehtari, Aki2014 in Spatial Statistics (Elsevier BV)ISSN: 2211-6753Face-to-face information combined with a booklet versus a booklet alone for treatment of mild low-back pain: a randomized controlled trial
Rantonen, Jarmo; Vehtari, Aki; Karppinen, Jaro; Luoto, Satu; Viikari-Juntura, Eira; Hupli, Markku; Malmivaara, Antti; Taimela, Simo2014 in SCANDINAVIAN JOURNAL OF WORK ENVIRONMENT AND HEALTH (Finnish Institute of Occupational Health)ISSN: 0355-3140Laplace Approximation for Logistic Gaussian Process Density Estimation and Regression
Riihimaki, Jaakko; Vehtari, Aki2014 in BAYESIAN ANALYSIS (Carnegie Mellon University)ISSN: 1936-0975The Influence of Selective Participation in a Physical Activity Intervention on the Generalizability of Findings
Vehtari, Aki; Reijonsaari, Karita; Kahilakoski, Olli-Pekka; Paananen, Markus; van Mechelen, Willem; Taimela, Simo2014 in JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE (Lippincott Williams and Wilkins)ISSN: 1076-2752Nested Expectation Propagation for Gaussian Process Classification with a Multinomial Probit Likelihood
Riihimäki, Jaakko; Jylänki, Pasi; Vehtari, Aki2013 in JOURNAL OF MACHINE LEARNING RESEARCH (MICROTOME PUBL)ISSN: 1532-4435GPstuff: Bayesian Modeling with Gaussian Processes
Vanhatalo, Jarno; Riihimäki, Jaakko; Hartikainen, Jouni; Jylänki, Pasi; Tolvanen, Ville; Vehtari, Aki2013 in JOURNAL OF MACHINE LEARNING RESEARCH (MICROTOME PUBL)ISSN: 1532-4435One vs Three Years of Adjuvant Imatinib for Operable Gastrointestinal Stromal Tumor: A Randomized Trial
Joensuu, Heikki; Eriksson, Mikael; Sundby Hall, Kirsten; Hartmann, Jörg T.; Pink, Daniel; Schütte, Jochen; Ramadori, Giuliano; Hohenberger, Peter; Duyster, Justus; Al-Batran, Salah-Eddin; Schlemmer, Marcus; Bauer, Sebastian; Wardelmann, Eva; Sarlomo-Rikala, Maarit; Nilsson, Bengt; Sihto, Harri; Monge, Odd R.; Bono, Petri; Kallio, Raija; Vehtari, Aki; Leinonen, Mika; Alvegård, Thor; Reichardt, Peter2012 in JAMA : JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION (American Medical Association)ISSN: 0098-7484Risk of recurrence of gastrointestinal stromal tumour after surgery: an analysis of pooled population-based cohorts
Joensuu, Heikki; Vehtari, Aki; Riihimaki, Jaakko; Nishida, Toshirou; Steigen, Sonja E.; Brabec, Peter; Plank, Lukas; Nilsson, Bengt; Cirilli, Claudia; Braconi, Chiara; Bordoni, Andrea; Magnusson, Magnus K.; Linke, Zdenek; Sufliarsky, Jozef; Federico, Massimo; Jonasson, Jon G.; Dei Tos, Angelo Paolo; Rutkowski, Piotr2012 in LANCET ONCOLOGY (Lancet Publishing Group)ISSN: 1470-2045Finite Adaptation and Multistep Moves in the Metropolis-Hastings Algorithm for Variable Selection in Genome-Wide Association Analysis
Peltola, Tomi; Marttinen, Pekka; Vehtari, Aki2012 in PLOS ONE (PUBLIC LIBRARY SCIENCE)Bayesian Variable Selection in Searching for Additive and Dominant Effects in Genome-Wide Data
Peltola, Tomi; Marttinen, Pekka; Jula, Antti; Salomaa, Veikko; Perola, Markus; Vehtari, Aki2012 in PLOS ONE (PUBLIC LIBRARY SCIENCE)The effectiveness of two active interventions compared to self-care advice in employees with non-acute low back symptoms.A randomised, controlled trial with a 4-year follow-up in the occupational heal
Rantonen, Jorma; Luoto, Satu; Vehtari, Aki; Hupli, Markku; Karppinen, Jaro; Malmivaara, Antti; Taimela, Simo2012 in OCCUPATIONAL AND ENVIRONMENTAL MEDICINE (BMJ Publishing Group)ISSN: 1351-0711The effectiveness of physical activity monitoring and distance counseling in an occupational setting - Results from a randomized controlled trial (CoAct)
Reijonsaari, Karita; Vehtari, Aki; Kahilakoski, Olli-Pekka; van Mechelen, Willem; Aro, Timo; Taimela, Simo2012 in BMC PUBLIC HEALTH (BIOMED CENTRAL LTD)Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER
Särkkä, S.; Solin, A.; Nummenmaa, A.; Vehtari, A.; Auranen, T.; Vanni, S.; Lin, F.-H.2012 in NEUROIMAGE (ACADEMIC PRESS INC ELSEVIER SCIENCE)ISSN: 1053-8119A survey of Bayesian predictive methods for model assessment, selection and comparison
Vehtari, Aki; Ojanen, Janne2012 in STATISTICS SURVEYS (ACADEMIC PRESS INC ELSEVIER SCIENCE)Robust Gaussian Process Regression with a Student-t Likelihood
Jylänki, Pasi; Vanhatalo, Jarno; Vehtari, Aki2011 in JOURNAL OF MACHINE LEARNING RESEARCH (MICROTOME PUBL)ISSN: 1532-4435Fragmented QRS in Prediction of Cardiac Deaths and Heart Failure Hospitalizations after Myocardial Infarction
Korhonen, Petri; Husa, Terhi; Konttila, Teijo; Tierala, Ilkka; Mäkijärvi, Markku; Väänänen, Heikki; Ojanen, Janne; Vehtari, Aki; Toivonen, Lauri2010 in Annals of noninvasive electrocardiology (Wiley-Blackwell)ISSN: 1082-720XGaussian processes with monotonicity information
Riihimäki, Jaakko; Vehtari, Aki2010 in JOURNAL OF MACHINE LEARNING RESEARCH (MICROTOME PUBL)ISSN: 1532-4435Analysing the length of care episode after hip fracture a nonparametric and a parametric Bayesian approach
Riihimäki, Jaakko; Sund, Reijo; Vehtari, Aki2010 in HEALTH CARE MANAGEMENT SCIENCE (Kluwer Academic Publishers)ISSN: 1386-9620Approximate inference for disease mapping with sparse Gaussian processes
Vanhatalo, Jarno; Pietiläinen, Ville; Vehtari, Aki2010 in STATISTICS IN MEDICINE (John Wiley and Sons Ltd)ISSN: 0277-6715Automatic fMRI-guided MEG multidipole localization for visual responses
Auranen, Toni; Nummenmaa, Aapo; Vanni, Simo; Vehtari, Aki; Hämäläinen, Matti S.; Lampinen, Jouko; Jääskeläinen, Iiro P.2009 in HUMAN BRAIN MAPPING (Wiley-Liss Inc.)ISSN: 1065-9471The effectiveness of physical activity monitoring and distance counselling in an occupational health seting - a research protocol for a randomised controlled trial (CoAct)
Reijonsaari, Karita; Vehtari, Aki; Van Mechelen, Willem; Aro, Timo; Taimela, Simo2009 in BMC PUBLIC HEALTH (BIOMED CENTRAL LTD)Modeling the length of care episode after hip fracture: does the type of fracture matter?
Sund, R.; Riihimäki, Jaakko; Mäkelä, M.; Vehtari, Aki; Lüthje, P.; Huusko, T.; Häkkinen, U.2009 in SCANDINAVIAN JOURNAL OF SURGERY (Finnish Surgical Society)ISSN: 1457-4969Discussion to 'Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations' by Håvard Rue, Sara Martino and Nicolas Chopin
Vanhatalo, Jarno; Vehtari, Aki2009 in JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B: STATISTICAL METHODOLOGY (Wiley-Blackwell)ISSN: 1369-7412A multi-metabolite analysis of serum by H-1 NMR spectroscopy: Early systemic signs of Alzheimer's disease
Tukiainen, T.; Tynkkynen, T.; Mäkinen, V-P.; Jylänki, P.; Kangas, A.; Hokkanen, J.; Vehtari, A.; Grohn, O.; Hallikainen, M.; Soininen, H.; Kivipelto, M.; Groop, P-H.; Kaski, K.; Laatikainen, R.; Soininen, P.; Pirttilä, T.; Ala-Korpela, M.2008 in BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS (ACADEMIC PRESS INC ELSEVIER SCIENCE)ISSN: 0006-291XBayesian inverse analysis of neuromagnetic data using cortically constrained multiple dipoles
Auranen, Toni; Nummenmaa, Aapo; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Vehtari, Aki; Sams, Mikko2007 in HUMAN BRAIN MAPPING (Wiley-Liss Inc.)ISSN: 1065-9471Automatic relevance-determination based on hierarchical Bayesian MEG inversion in practice
Nummenmaa, Aapo; Auranen, Toni; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Sams, Mikko; Vehtari, Aki; Lampinen, Jouko2007 in NEUROIMAGE (ACADEMIC PRESS INC ELSEVIER SCIENCE)ISSN: 1053-8119Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods
Nummenmaa, Aapo; Auranen, Toni; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Sams, Mikko; Vehtari, Aki2007 in NEUROIMAGE (ACADEMIC PRESS INC ELSEVIER SCIENCE)ISSN: 1053-8119Exploring the lipoprotein composition using Bayesian regression on serum lipidomic profiles
Sysi-Aho, Marko Tapani; Vehtari, Aki; Velagapudi, Vidya; Westerbacka, Jukka; Yetukuri, Laxman; Bergholm, Robert; Taskinen, Marja-Riitta; Yki-Järvinen, Hannele; Orexic, Matej2007 in BIOINFORMATICS (OXFORD UNIV PRESS INC)CATS benchmark time series prediction by Kalman smoother with cross-validated noise density
Särkkä, Simo; Vehtari, Aki; Lampinen, Jouko2007 in NEUROCOMPUTING (Elsevier Science B.V.)ISSN: 0925-2312Rao-Blackwellized Particle Filter for Multiple Target Tracking
Särkkä, Simo; Vehtari, Aki; Lampinen, Jouko2007 in INFORMATION FUSION (Elsevier)ISSN: 1566-2535Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology
Vanhatalo, Jarno; Vehtari, Aki2007 in JMLR Workshop and Conference Proceedings (Elsevier)A novel Bayesian approach to quantify clinical variables and to determine their spectroscopic counterparts in 1H NMR metabonomic data
Vehtari, Aki; Mäkinen, Ville-Petteri; Soininen, Pasi; Ingman, Petri; Mäkelä, Sanna M.; Savolainen, Markku J.; Hannuksela, Minna L.; Kaski, Kimmo; Ala-Korpela, Mika2007 in BMC BIOINFORMATICS (BioMed Central)Bayesian analysis of the neuromagnetic inverse problem with l^p -norm priors
Auranen, Toni; Nummenmaa, Aapo; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Vehtari, Aki; Sams, Mikko2005 in NEUROIMAGE (ACADEMIC PRESS INC ELSEVIER SCIENCE)ISSN: 1053-8119Shape analysis of concrete aggregates for statistical quality modeling
Kalliomäki, Ilkka; Vehtari, Aki; Lampinen, Jouko2005 in MACHINE VISION AND APPLICATIONS (Springer Verlag)ISSN: 0932-8092Bayesian model assessment and comparison using cross-validation predictive densities
Vehtari, Aki; Lampinen, Jouko2002 in NEURAL COMPUTATION (MIT PRESS)ISSN: 0899-7667Discussion to "Bayesian measures of model complexity and fit" by Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and van der Linde, A.
Vehtari, Aki2002 in Journal of the Royal Statistical Society, Series B (MIT PRESS)Bayesian Approach for Neural Networks - Review and Case Studies
Lampinen, Jouko; Vehtari, Aki2001 in NEURAL NETWORKS (PERGAMON-ELSEVIER SCIENCE LTD)ISSN: 0893-6080Bayesian MLP neural networks for image analysis.
Vehtari, Aki; Lampinen, Jouko2000 in PATTERN RECOGNITION LETTERS (Elsevier)ISSN: 0167-8655Book section, Chapters in research booksDiscussion to "Hierarchical multivariate CAR models for spatio-temporally correlated survival data" by Carlin B.P. and Banerjee, S
Vehtari, Aki2003 ISBN: 0198526156Discussion to "Bayesian Treed Generalized Linear Models" by Chipman, H.A., George, E.Il, And McCulloch R.E.
Vehtari, Aki2003 ISBN: 0198526156Expected utility estimation via cross-validation
Vehtari, Aki; Lampinen, Jouko2003 ISBN: 0-19-852615-6Neljännesvuosisata Hatutusta: Hahmontunnistustutkimus Suomessa 1977-2002
Lampinen, Jouko; Vehtari, Aki2002 Bayesian neural networks: Case studies in industrial applications.
Vehtari, Aki; Lampinen, Jouko2000 ISBN: 978-1-4471-1155-9Conference proceedingsOn the hyperprior choice for the global shrinkage parameter in the horseshoe prior
Piironen, Juho; Vehtari, Aki2017 in Proceedings of Machine Learning Research (PMLR)ISSN: 1938-7228Bayesian optimization with virtual derivative sign observations
Siivola, Eero; Vehtari, Aki; Vanhatalo, Jarno; Gonzalez , Javier2017 Automatic detection of acute kidney injury episodes from primary care data
Tirunagari, Santosh; Bull, Simon C.; Vehtari, Aki; Farmer, Christopher; De Lusignan, Simon; Poh, Norman2017 ISBN: 9781509042401Projection predictive model selection for Gaussian processes
Piironen, Juho; Vehtari, Aki2016 in IEEE International Workshop on Machine Learning for Signal Processing (IEEE Xplore digital library)ISBN: 978-1-5090-0746-2ISSN: 2161-0371Chained Gaussian Processes
Saul, Alan; Hensman, James; Vehtari, Aki; Lawrence, Neil D.2016 in Journal of Machine Learning Research: Workshop and Conference Proceedings (JMLR W&CP)ISSN: 1938-7228Automatic monotonicity detection for Gaussian Processes
Siivola, Eero; Piironen, Juho; Vehtari, Aki2016 Expectation propagation for likelihoods depending on an inner product of two multivariate random variables
Peltola, Tomi; Jylänki, Pasi; Vehtari, Aki2014 Hierarchical Bayesian survival analysis and projective covariate selection in cardiovascular event risk prediction
Peltola, Tomi; Havulinna, Aki S.; Salomaa, Veikko; Vehtari, Aki2014 Catching Physiological Noise: Comparison of DRIFTER in Image and k-Space
Solin, Arno; Särkkä, Simo; Nummenmaa, Aapo; Vehtari, Aki; Lin, Fa-Hsuan2014 Expectation propagation for nonstationary heteroscedastic Gaussian process regression
Tolvanen, Ville; Jylänki, Pasi; Vehtari, Aki2014 in IEEE International Workshop on Machine Learning for Signal Processing (IEEE)ISBN: 978-1-4799-3694-6ISSN: 2161-0363Volumetric space-time structure of physiological noise in BOLD fMRI
Solin, Arno; Särkkä, Simo; Nummenmaa, Aapo; Vehtari, Aki; Auranen, Toni; Vanni, Simo; Lin, Fa-Hsuan2013 Identification of Spatio-Temporal Oscillatory Signal Structure in Cerebral Hemodynamics Using DRIFTER.
Särkkä, S.; Solin, A.; Nummenmaa, A.; Vehtari, A.; Auranen, T.; Vanni, S.; Lin, F.-H.2012 Dynamical statistical modeling of physiological noise for fast BOLD fMRI
Särkkä, S.; Nummenmaa, A.; Solin, A.; Vehtari, A.; Witzel, T.; Auranen, T.; Vanni, S.; Hämäläinen, M.S.; Lin, F-H.2011 Speeding up the binary Gaussian process classification
Vanhatalo, Jarno; Vehtari, Aki2010 Features and metric from a classifier improve visualizations with dimension reduction
Parviainen, Elina; Vehtari, Aki2009 Gaussian process regression with Student-t likelihood
Vanhatalo, Jarno; Jylänki, Pasi; Vehtari, Aki2009 Approximate Inference in Disease Mapping with Sparse Log Gaussian Process Priors
Vanhatalo, Jarno; Vehtari, Aki2008 Modelling local and global phenomena with sparse Gaussian processes
Vanhatalo, Jarno; Vehtari, Ai2008 A quantitative Bayesian approach to metabonomic 1H NMR data of serum
Jylänki, Pasi; Niemi, Jaakko; Mäkinen, Ville-Petteri; Salminen, Aino; Vanhatalo, Lauri; Soininen, Pasi; Ingman, Petri; Kaski, Kimmo; Groop, Per-Henrik; Vehtari, Aki; Ala-Korpela, Mika2007 Prediction of ESTSP Competition Time Series by Unscented Kalman Filter and RTS Smoother
Särkkä, Simo; Vehtari, Aki; Lampinen, Jouko2007 NMR Metabonomics as a Potential Reciipe Against Natural Fuzziness in the Borderline of Health and Disease
Ala-Korpela, Mika; Mäkinen, Ville-Petteri; Salminen, Aino; Suna, Teemu; Lankinen, Niko; Kumpula, Linda; Niinikoski, Antti; Saramäki, Jari; Vehtari, Aki; Soininen, Pasi; Laatikainen, Reino; Ingman, Petri; Mäkelä, Sanna; Nissinen, Antti; Hannuksela, Minna; Savolainen, Markku; Groop, Per-Henrik; Jauhiainen, Matti; Taskinen, Marja-Riitta; Liimatainen, Timo; Sipola, Petri; Heikkonen, Jukka; Kaski, Kimmo2006 A Bayesian approach to select linearly separable spectral feature combinations
Jylänki, Pasi; Grave de Peralta Menendez, Rolando; Cincotti, Febo; Kauhanen, Laura; Vehtari, Aki2006 A Hierarchical Paradigm for Knowledge Discovery: Towards Biomedical Utilisation of 1H NMR Metabonomics
Mäkinen, Ville-Petteri; Vehtari, Aki; Salminen, Aino; Saramäki, Jari; Kaski, Kimmo; Ala-Korpela, Mika2006 A Novel Bayesian Approach for Uncovering Potential Spectroscopic Counterparts for Clinical Variables in 1H NMR Metabonomic Applications
Vehtari, Aki; Mäkinen, Ville-Petteri; Soininen, Pasi; Ingman, Petri; Mäkelä, Sanna; Savolainen, Markku; Hannuksela, Minna; Kaski, Kimmo; Ala-Korpela, Mika2006 Rao-Blackwellized Monte Carlo Data Association for Multiple Target Tracking
Särkkä, Simo; Vehtari, Aki; Lampinen, Jouko2004 Time series prediction by Kalman smoother with cross validated noise density
Särkkä, Simo; Vehtari, Aki; Lampinen, Jouko2004 in IEEE International Joint Conference on Neural Networks (IJCNN) (IEEE)ISBN: 0-7803-8359-1ISSN: 1098-7576Bayesian techniques for neural networks - review and case studies.
Lampinen, J.; Vehtari, A.2000 On MCMC sampling in Bayesian MLP neural networks
Vehtari, Aki; Särkkä, Simo; Lampinen, Jouko2000 in IEEE International Joint Conference on Neural Networks (IJCNN) (IEEE Computer Society)ISSN: 1098-7576Bayesian MLP neural networks - review and case studies.
Vehtari, A.; Lampinen, J.2000 Forest change detection via Landsat TM difference features
Heikkonen, J.; Varjo, J.; Vehtari, A.1999 Application of Bayesian Neural Network in Electrical Impedance Tomography
Lampinen, J.; Vehtari, A.; Leinonen, K.1999 Bayesian Neural Network to Solve the Inverse Problem in Electrical Impedance Tomography
Lampinen, J.; Vehtari, A.; Leinonen, K.1999 Bayesian Neural Networks for Image Analysis
Vehtari, A.; Lampinen, J.1999 Bayesian Neural Networks with Correlating Residuals
Vehtari, A.; Lampinen, J.1999 Bayesian Neural Networks for Industrial Applications
Vehtari, A.; Lampinen, J.1999 Bayesian Neural Networks with Correlating Residuals
Vehtari, A.; Lampinen, J.1999 Forest scene classification: Comparison of classifiers
Vehtari, A.; Juujärvi, J.; Heikkonen, J.; Lampinen, J.1998 Using Bayesian neural networks to classify forest scenes
Vehtari, Aki; Heikkonen, Jukka; Lampinen, Jouko; Juujärvi, Jouni1998 in PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE) (SPIE - The International Society of Optical Engineering)ISBN: 0-8194-2983-XISSN: 0277-786XNon-refereed scientific articles
Unrefereed journal articlesGaussian process modeling in approximate Bayesian computation to estimate horizontal gene transfer in bacteria
Järvenpää, Marko; Gutmann, Michael; Vehtari, Aki; Marttinen, Pekka2016 in ANNALS OF APPLIED STATISTICS (Institute of Mathematical Statistics)ISSN: 1932-6157Discussion to 'Riemann manifold Langevin and Hamiltonian Monte Carlo methods'
Vehtari, Aki; Vanhatalo, Jarno2011 in Journal of the Royal Statistical Society, Series B (Statistical Methodology) (Institute of Mathematical Statistics)Unrefereed conference proceedingsUser Modelling for Avoiding Overfitting in Interactive Knowledge Elicitation for Prediction
Daee, Pedram; Peltola, Tomi; Vehtari, Aki; Kaski, Samuel2017 Scientific books (monographs)
BookBayesian Data Analysis
Gelman, Andrew; Carlin, John B.; Stern, Hal S.; Dunson, David B.; Vehtari, Aki; Rubin, Donald B.2013 ISBN: 9781439840955Publications intended for professional communities
Published development or research reportEfficient acquisition rules for model-based approximate Bayesian computation
Järvenpää, Marko; Gutmann, Michael; Vehtari, Aki; Marttinen, Pekka2017 On the Hyperprior Choice for the Global Shrinkage Parameter in the Horseshoe Prior
Piironen, Juho; Vehtari, Aki2016 Pareto Smoothed Importance Sampling
Vehtari, Aki; Gelman, Andrew; Gabry, Jonah2016 Hierarchical expectation propagation for Bayesian aggregation of average data
Weber, Sebastian; Gelman, Andrew; Carpenter, Bob; Lee, Daniel ; Betancourt, Michael; Vehtari, Aki; Racine, Amy2016 Bayesian inference for spatio-temporal spike and slab priors
Andersen, Michael Riis; Vehtari, Aki; Winther, Ole; Hansen, Lars Kai2015 Brain-to-brain hyperclassification reveals action-specific motor mapping of observed actions in humans
Smirnov, Dmitry; Lachat, Fanny; Peltola, Tomi; Lahnakoski, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Vehtari, Aki; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri2015 1H NMR spectroscopy in computational medicine
Mäkinen, V.-P.; Soininen, P.; Tukiainen, T.; Niemi, J.; Jylänki, P.; Kangas, A.J.; Peltola, T.; Hokkanen, J.; Kumpula, L.; Ojanen, J.; Sandholm, N.; Forsblom, C.; Vehtari, A.; Groop, P.-H.; Kaski, K.; Ala-Korpela, M.2008 Automatic fMRI-guided MEG multidipole localization for visual responses.
Auranen, T.; Nummenmaa, A.; Vanni, S.; Vehtari, A.; Hämäläinen, M.S.; Lampinen, J.; Jääskeläinen, I.P.2007 A Bayesian approach to metabonomic 1H NMR data of serum
Jylänki, Pasi; Niemi, Jaakko; Lankinen, Niko; Salminen, Aino; Vehtari, Aki; Ala-Korpela, Mika2007 Sparse MEG inverse solutiona via hierarchical Bayesian modeling: Evaluation with a parallel fMRI study
Nummenmaa, Aapo; Auranen, Toni; Vanni, Simo; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Vehtari, Aki; Sams, Mikko2007 Cortically constrained neuromagnitic inverse analysis: structure of Bayesian multidipolar solutions and effects of MEG-MRI coregistration error
Auranen, Toni; Nummenmaa, Aapo; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Vehtari, Aki; Sams, Mikko2006 Inverse estimates of basic auditory and visual MEG responses by hierarchical Variational Bayesian approach
Nummenmaa, Aapo; Auranen, Toni; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Sams, Mikko; Vehtari, Aki2006 Rao-Blackwellized Particle Filter for Tracking Unknown Number of Targets in Clutter
Särkkä, Simo; Vehtari, Aki; Lampinen, Jouko2005 Full Bayesian Analysis of the MEG Inverse Problem with 1 p-norm Priors.
Auranen, T.; Nummenmaa, A.; Hämäläinen, M.S.; Jääskeläinen, I.P.; Lampinen, J.; Vehtari, A.; Sams, M.2004 A Hierarchical Bayesian Approach in distributed MEG source Modelling
Nummenmaa, A.; Auranen, T.; Hämäläinen, M.S.; Jääskeläinen, I.P.; Lampinen, J.; Sams, M.; Vehtari, A.2004 Probabilistic methods in multiple target tracking - Review and bibliography
Särkkä, Simo; Tamminen, Toni; Vehtari, Aki; Lampinen, Jouko2004 Model selection via predictive explanatory power
Vehtari, Aki; Lampinen, Jouko2004 Bayesian Input Variable Selection Using Posterior Probabilities and Expected Utilities
Vehtari, Aki; Lampinen, Jouko2002 On Bayesian Model Asessment and Choice Using Cross-Validation Predictive Densities
Vehtari, Aki; Lampinen, Jouko2001 Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities
Vehtari, Aki; Lampinen, Jouko2001 Bayesian model assesment and comparison using cross-validation predictive densities
Vehtari, Aki; Lampinen, Jouko2001 Bayesian Input Variable Selection Using Cross-Validation Predictive Densities and Reversible Jump MCMC
Vehtari, Aki; Lampinen, Jouko2001 Publications intended for the general public
Popular article, newspaper articleAlkoholikuolleisuuden alueelliset erot Suomessa 2000-luvun alussa
Vanhatalo, Jarno; Mäkelä, Pia; Vehtari, Aki2010 in YHTEISKUNTAPOLITIIKKA (arXiv.org)ISSN: 1455-6901Audiovisual material, ICT software
ICT programs or applicationsMCMC Diagnostics for Matlab 6.x
Särkkä, Simo; Vehtari, Aki2003 FBM tools for Matlab 6.x, Version 1.0
Särkkä, Simo; Vehtari, Aki2003 Using stacking to average Bayesian predictive distributions
Yao, Yuling; Vehtari, Aki; Simpson, Daniel; Gelman, Andrew2017 in arXiv.org (arXiv.org)ELFI: Engine for Likelihood-Free Inference
Kangasrääsiö, Antti; Lintusaari, Jarno; Skyten, Kusti; Järvenpää, Marko; Vuollekoski, Henri; Gutmann, Michael; Vehtari, Aki; Corander, Jukka; Kaski, Samuel2016 SLUG transcription factor promotes cell proliferation and predicts outcome of patients with gastrointestinal stromal tumor
Sihto, Harri; Pulkka, O. P.; Nilsson, Bengt; Sarlomo-Rikala, Maarit; Reichardt, Peter; Eriksson, M.; Hall, Kirsten Sundby; Wardelmann, Eva; Vehtari, A.; Joensuu, Päivi H.2016 in EUROPEAN JOURNAL OF CANCER (ELSEVIER SCI LTD)ISSN: 0959-8049Erratum to: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Vehtari, Aki; Gelman, Andrew; Gabry, Jonah2016 in Statistics and Computing (ELSEVIER SCI LTD)ISSN: 0960-3174
Expectation propagation as a way of life: A framework for Bayesian inference on partitioned data
Effect of KIT and PDGFRA mutations on survival in patients with gastrointestinal stromal tumors treated with adjuvant imatinib An exploratory analysis of a randomized clinical trial
Nudged elastic band calculations accelerated with Gaussian process regression
ELFI: Engine for Likelihood-Free Inference
Sparsity information and regularization in the horseshoe and other shrinkage priors
Comparison of Bayesian predictive methods for model selection
SLUG transcription factor A pro-survival and prognostic factor in gastrointestinal stromal tumour
Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Minimum energy path calculations with Gaussian process regression
Cost-effectiveness of providing patients with information on managing mild low-back symptoms in an occupational health setting
Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models
The current duration design for estimating the time to pregnancy distribution: a nonparametric Bayesian perspective
Quantitative p95HER2 and HER2 correlations with outcome in the FinHer trial
Estimation and Accuracy after Model Selection Comment
Comment
Understanding predictive information criteria for Bayesian models
Gastrointestinal Stromal Tumor: A Method for Optimizing the Timing of CT Scans in the Follow-up of Cancer Patients
Expectation Propagation for Neural Networks with Sparsity-Promoting Priors
Hierarchical second-order analysis of replicated spatial point patterns with non-spatial covariates
Face-to-face information combined with a booklet versus a booklet alone for treatment of mild low-back pain: a randomized controlled trial
Laplace Approximation for Logistic Gaussian Process Density Estimation and Regression
The Influence of Selective Participation in a Physical Activity Intervention on the Generalizability of Findings
Nested Expectation Propagation for Gaussian Process Classification with a Multinomial Probit Likelihood
GPstuff: Bayesian Modeling with Gaussian Processes
One vs Three Years of Adjuvant Imatinib for Operable Gastrointestinal Stromal Tumor: A Randomized Trial
Risk of recurrence of gastrointestinal stromal tumour after surgery: an analysis of pooled population-based cohorts
Finite Adaptation and Multistep Moves in the Metropolis-Hastings Algorithm for Variable Selection in Genome-Wide Association Analysis
Bayesian Variable Selection in Searching for Additive and Dominant Effects in Genome-Wide Data
The effectiveness of two active interventions compared to self-care advice in employees with non-acute low back symptoms.A randomised, controlled trial with a 4-year follow-up in the occupational heal
The effectiveness of physical activity monitoring and distance counseling in an occupational setting - Results from a randomized controlled trial (CoAct)
Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER
A survey of Bayesian predictive methods for model assessment, selection and comparison
Robust Gaussian Process Regression with a Student-t Likelihood
Fragmented QRS in Prediction of Cardiac Deaths and Heart Failure Hospitalizations after Myocardial Infarction
Gaussian processes with monotonicity information
Analysing the length of care episode after hip fracture a nonparametric and a parametric Bayesian approach
Approximate inference for disease mapping with sparse Gaussian processes
Automatic fMRI-guided MEG multidipole localization for visual responses
The effectiveness of physical activity monitoring and distance counselling in an occupational health seting - a research protocol for a randomised controlled trial (CoAct)
Modeling the length of care episode after hip fracture: does the type of fracture matter?
Discussion to 'Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations' by Håvard Rue, Sara Martino and Nicolas Chopin
A multi-metabolite analysis of serum by H-1 NMR spectroscopy: Early systemic signs of Alzheimer's disease
Bayesian inverse analysis of neuromagnetic data using cortically constrained multiple dipoles
Automatic relevance-determination based on hierarchical Bayesian MEG inversion in practice
Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods
Exploring the lipoprotein composition using Bayesian regression on serum lipidomic profiles
CATS benchmark time series prediction by Kalman smoother with cross-validated noise density
Rao-Blackwellized Particle Filter for Multiple Target Tracking
Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology
A novel Bayesian approach to quantify clinical variables and to determine their spectroscopic counterparts in 1H NMR metabonomic data
Bayesian analysis of the neuromagnetic inverse problem with l^p -norm priors
Shape analysis of concrete aggregates for statistical quality modeling
Bayesian model assessment and comparison using cross-validation predictive densities
Discussion to "Bayesian measures of model complexity and fit" by Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and van der Linde, A.
Bayesian Approach for Neural Networks - Review and Case Studies
Bayesian MLP neural networks for image analysis.
Discussion to "Hierarchical multivariate CAR models for spatio-temporally correlated survival data" by Carlin B.P. and Banerjee, S
Discussion to "Bayesian Treed Generalized Linear Models" by Chipman, H.A., George, E.Il, And McCulloch R.E.
Expected utility estimation via cross-validation
Neljännesvuosisata Hatutusta: Hahmontunnistustutkimus Suomessa 1977-2002
Bayesian neural networks: Case studies in industrial applications.
Conference proceedingsOn the hyperprior choice for the global shrinkage parameter in the horseshoe prior
Piironen, Juho; Vehtari, Aki2017 in Proceedings of Machine Learning Research (PMLR)ISSN: 1938-7228Bayesian optimization with virtual derivative sign observations
Siivola, Eero; Vehtari, Aki; Vanhatalo, Jarno; Gonzalez , Javier2017 Automatic detection of acute kidney injury episodes from primary care data
Tirunagari, Santosh; Bull, Simon C.; Vehtari, Aki; Farmer, Christopher; De Lusignan, Simon; Poh, Norman2017 ISBN: 9781509042401Projection predictive model selection for Gaussian processes
Piironen, Juho; Vehtari, Aki2016 in IEEE International Workshop on Machine Learning for Signal Processing (IEEE Xplore digital library)ISBN: 978-1-5090-0746-2ISSN: 2161-0371Chained Gaussian Processes
Saul, Alan; Hensman, James; Vehtari, Aki; Lawrence, Neil D.2016 in Journal of Machine Learning Research: Workshop and Conference Proceedings (JMLR W&CP)ISSN: 1938-7228Automatic monotonicity detection for Gaussian Processes
Siivola, Eero; Piironen, Juho; Vehtari, Aki2016 Expectation propagation for likelihoods depending on an inner product of two multivariate random variables
Peltola, Tomi; Jylänki, Pasi; Vehtari, Aki2014 Hierarchical Bayesian survival analysis and projective covariate selection in cardiovascular event risk prediction
Peltola, Tomi; Havulinna, Aki S.; Salomaa, Veikko; Vehtari, Aki2014 Catching Physiological Noise: Comparison of DRIFTER in Image and k-Space
Solin, Arno; Särkkä, Simo; Nummenmaa, Aapo; Vehtari, Aki; Lin, Fa-Hsuan2014 Expectation propagation for nonstationary heteroscedastic Gaussian process regression
Tolvanen, Ville; Jylänki, Pasi; Vehtari, Aki2014 in IEEE International Workshop on Machine Learning for Signal Processing (IEEE)ISBN: 978-1-4799-3694-6ISSN: 2161-0363Volumetric space-time structure of physiological noise in BOLD fMRI
Solin, Arno; Särkkä, Simo; Nummenmaa, Aapo; Vehtari, Aki; Auranen, Toni; Vanni, Simo; Lin, Fa-Hsuan2013 Identification of Spatio-Temporal Oscillatory Signal Structure in Cerebral Hemodynamics Using DRIFTER.
Särkkä, S.; Solin, A.; Nummenmaa, A.; Vehtari, A.; Auranen, T.; Vanni, S.; Lin, F.-H.2012 Dynamical statistical modeling of physiological noise for fast BOLD fMRI
Särkkä, S.; Nummenmaa, A.; Solin, A.; Vehtari, A.; Witzel, T.; Auranen, T.; Vanni, S.; Hämäläinen, M.S.; Lin, F-H.2011 Speeding up the binary Gaussian process classification
Vanhatalo, Jarno; Vehtari, Aki2010 Features and metric from a classifier improve visualizations with dimension reduction
Parviainen, Elina; Vehtari, Aki2009 Gaussian process regression with Student-t likelihood
Vanhatalo, Jarno; Jylänki, Pasi; Vehtari, Aki2009 Approximate Inference in Disease Mapping with Sparse Log Gaussian Process Priors
Vanhatalo, Jarno; Vehtari, Aki2008 Modelling local and global phenomena with sparse Gaussian processes
Vanhatalo, Jarno; Vehtari, Ai2008 A quantitative Bayesian approach to metabonomic 1H NMR data of serum
Jylänki, Pasi; Niemi, Jaakko; Mäkinen, Ville-Petteri; Salminen, Aino; Vanhatalo, Lauri; Soininen, Pasi; Ingman, Petri; Kaski, Kimmo; Groop, Per-Henrik; Vehtari, Aki; Ala-Korpela, Mika2007 Prediction of ESTSP Competition Time Series by Unscented Kalman Filter and RTS Smoother
Särkkä, Simo; Vehtari, Aki; Lampinen, Jouko2007 NMR Metabonomics as a Potential Reciipe Against Natural Fuzziness in the Borderline of Health and Disease
Ala-Korpela, Mika; Mäkinen, Ville-Petteri; Salminen, Aino; Suna, Teemu; Lankinen, Niko; Kumpula, Linda; Niinikoski, Antti; Saramäki, Jari; Vehtari, Aki; Soininen, Pasi; Laatikainen, Reino; Ingman, Petri; Mäkelä, Sanna; Nissinen, Antti; Hannuksela, Minna; Savolainen, Markku; Groop, Per-Henrik; Jauhiainen, Matti; Taskinen, Marja-Riitta; Liimatainen, Timo; Sipola, Petri; Heikkonen, Jukka; Kaski, Kimmo2006 A Bayesian approach to select linearly separable spectral feature combinations
Jylänki, Pasi; Grave de Peralta Menendez, Rolando; Cincotti, Febo; Kauhanen, Laura; Vehtari, Aki2006 A Hierarchical Paradigm for Knowledge Discovery: Towards Biomedical Utilisation of 1H NMR Metabonomics
Mäkinen, Ville-Petteri; Vehtari, Aki; Salminen, Aino; Saramäki, Jari; Kaski, Kimmo; Ala-Korpela, Mika2006 A Novel Bayesian Approach for Uncovering Potential Spectroscopic Counterparts for Clinical Variables in 1H NMR Metabonomic Applications
Vehtari, Aki; Mäkinen, Ville-Petteri; Soininen, Pasi; Ingman, Petri; Mäkelä, Sanna; Savolainen, Markku; Hannuksela, Minna; Kaski, Kimmo; Ala-Korpela, Mika2006 Rao-Blackwellized Monte Carlo Data Association for Multiple Target Tracking
Särkkä, Simo; Vehtari, Aki; Lampinen, Jouko2004 Time series prediction by Kalman smoother with cross validated noise density
Särkkä, Simo; Vehtari, Aki; Lampinen, Jouko2004 in IEEE International Joint Conference on Neural Networks (IJCNN) (IEEE)ISBN: 0-7803-8359-1ISSN: 1098-7576Bayesian techniques for neural networks - review and case studies.
Lampinen, J.; Vehtari, A.2000 On MCMC sampling in Bayesian MLP neural networks
Vehtari, Aki; Särkkä, Simo; Lampinen, Jouko2000 in IEEE International Joint Conference on Neural Networks (IJCNN) (IEEE Computer Society)ISSN: 1098-7576Bayesian MLP neural networks - review and case studies.
Vehtari, A.; Lampinen, J.2000 Forest change detection via Landsat TM difference features
Heikkonen, J.; Varjo, J.; Vehtari, A.1999 Application of Bayesian Neural Network in Electrical Impedance Tomography
Lampinen, J.; Vehtari, A.; Leinonen, K.1999 Bayesian Neural Network to Solve the Inverse Problem in Electrical Impedance Tomography
Lampinen, J.; Vehtari, A.; Leinonen, K.1999 Bayesian Neural Networks for Image Analysis
Vehtari, A.; Lampinen, J.1999 Bayesian Neural Networks with Correlating Residuals
Vehtari, A.; Lampinen, J.1999 Bayesian Neural Networks for Industrial Applications
Vehtari, A.; Lampinen, J.1999 Bayesian Neural Networks with Correlating Residuals
Vehtari, A.; Lampinen, J.1999 Forest scene classification: Comparison of classifiers
Vehtari, A.; Juujärvi, J.; Heikkonen, J.; Lampinen, J.1998 Using Bayesian neural networks to classify forest scenes
Vehtari, Aki; Heikkonen, Jukka; Lampinen, Jouko; Juujärvi, Jouni1998 in PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE) (SPIE - The International Society of Optical Engineering)ISBN: 0-8194-2983-XISSN: 0277-786XNon-refereed scientific articles
Unrefereed journal articlesGaussian process modeling in approximate Bayesian computation to estimate horizontal gene transfer in bacteria
Järvenpää, Marko; Gutmann, Michael; Vehtari, Aki; Marttinen, Pekka2016 in ANNALS OF APPLIED STATISTICS (Institute of Mathematical Statistics)ISSN: 1932-6157Discussion to 'Riemann manifold Langevin and Hamiltonian Monte Carlo methods'
Vehtari, Aki; Vanhatalo, Jarno2011 in Journal of the Royal Statistical Society, Series B (Statistical Methodology) (Institute of Mathematical Statistics)Unrefereed conference proceedingsUser Modelling for Avoiding Overfitting in Interactive Knowledge Elicitation for Prediction
Daee, Pedram; Peltola, Tomi; Vehtari, Aki; Kaski, Samuel2017 Scientific books (monographs)
BookBayesian Data Analysis
Gelman, Andrew; Carlin, John B.; Stern, Hal S.; Dunson, David B.; Vehtari, Aki; Rubin, Donald B.2013 ISBN: 9781439840955Publications intended for professional communities
Published development or research reportEfficient acquisition rules for model-based approximate Bayesian computation
Järvenpää, Marko; Gutmann, Michael; Vehtari, Aki; Marttinen, Pekka2017 On the Hyperprior Choice for the Global Shrinkage Parameter in the Horseshoe Prior
Piironen, Juho; Vehtari, Aki2016 Pareto Smoothed Importance Sampling
Vehtari, Aki; Gelman, Andrew; Gabry, Jonah2016 Hierarchical expectation propagation for Bayesian aggregation of average data
Weber, Sebastian; Gelman, Andrew; Carpenter, Bob; Lee, Daniel ; Betancourt, Michael; Vehtari, Aki; Racine, Amy2016 Bayesian inference for spatio-temporal spike and slab priors
Andersen, Michael Riis; Vehtari, Aki; Winther, Ole; Hansen, Lars Kai2015 Brain-to-brain hyperclassification reveals action-specific motor mapping of observed actions in humans
Smirnov, Dmitry; Lachat, Fanny; Peltola, Tomi; Lahnakoski, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Vehtari, Aki; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri2015 1H NMR spectroscopy in computational medicine
Mäkinen, V.-P.; Soininen, P.; Tukiainen, T.; Niemi, J.; Jylänki, P.; Kangas, A.J.; Peltola, T.; Hokkanen, J.; Kumpula, L.; Ojanen, J.; Sandholm, N.; Forsblom, C.; Vehtari, A.; Groop, P.-H.; Kaski, K.; Ala-Korpela, M.2008 Automatic fMRI-guided MEG multidipole localization for visual responses.
Auranen, T.; Nummenmaa, A.; Vanni, S.; Vehtari, A.; Hämäläinen, M.S.; Lampinen, J.; Jääskeläinen, I.P.2007 A Bayesian approach to metabonomic 1H NMR data of serum
Jylänki, Pasi; Niemi, Jaakko; Lankinen, Niko; Salminen, Aino; Vehtari, Aki; Ala-Korpela, Mika2007 Sparse MEG inverse solutiona via hierarchical Bayesian modeling: Evaluation with a parallel fMRI study
Nummenmaa, Aapo; Auranen, Toni; Vanni, Simo; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Vehtari, Aki; Sams, Mikko2007 Cortically constrained neuromagnitic inverse analysis: structure of Bayesian multidipolar solutions and effects of MEG-MRI coregistration error
Auranen, Toni; Nummenmaa, Aapo; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Vehtari, Aki; Sams, Mikko2006 Inverse estimates of basic auditory and visual MEG responses by hierarchical Variational Bayesian approach
Nummenmaa, Aapo; Auranen, Toni; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Sams, Mikko; Vehtari, Aki2006 Rao-Blackwellized Particle Filter for Tracking Unknown Number of Targets in Clutter
Särkkä, Simo; Vehtari, Aki; Lampinen, Jouko2005 Full Bayesian Analysis of the MEG Inverse Problem with 1 p-norm Priors.
Auranen, T.; Nummenmaa, A.; Hämäläinen, M.S.; Jääskeläinen, I.P.; Lampinen, J.; Vehtari, A.; Sams, M.2004 A Hierarchical Bayesian Approach in distributed MEG source Modelling
Nummenmaa, A.; Auranen, T.; Hämäläinen, M.S.; Jääskeläinen, I.P.; Lampinen, J.; Sams, M.; Vehtari, A.2004 Probabilistic methods in multiple target tracking - Review and bibliography
Särkkä, Simo; Tamminen, Toni; Vehtari, Aki; Lampinen, Jouko2004 Model selection via predictive explanatory power
Vehtari, Aki; Lampinen, Jouko2004 Bayesian Input Variable Selection Using Posterior Probabilities and Expected Utilities
Vehtari, Aki; Lampinen, Jouko2002 On Bayesian Model Asessment and Choice Using Cross-Validation Predictive Densities
Vehtari, Aki; Lampinen, Jouko2001 Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities
Vehtari, Aki; Lampinen, Jouko2001 Bayesian model assesment and comparison using cross-validation predictive densities
Vehtari, Aki; Lampinen, Jouko2001 Bayesian Input Variable Selection Using Cross-Validation Predictive Densities and Reversible Jump MCMC
Vehtari, Aki; Lampinen, Jouko2001 Publications intended for the general public
Popular article, newspaper articleAlkoholikuolleisuuden alueelliset erot Suomessa 2000-luvun alussa
Vanhatalo, Jarno; Mäkelä, Pia; Vehtari, Aki2010 in YHTEISKUNTAPOLITIIKKA (arXiv.org)ISSN: 1455-6901Audiovisual material, ICT software
ICT programs or applicationsMCMC Diagnostics for Matlab 6.x
Särkkä, Simo; Vehtari, Aki2003 FBM tools for Matlab 6.x, Version 1.0
Särkkä, Simo; Vehtari, Aki2003 Using stacking to average Bayesian predictive distributions
Yao, Yuling; Vehtari, Aki; Simpson, Daniel; Gelman, Andrew2017 in arXiv.org (arXiv.org)ELFI: Engine for Likelihood-Free Inference
Kangasrääsiö, Antti; Lintusaari, Jarno; Skyten, Kusti; Järvenpää, Marko; Vuollekoski, Henri; Gutmann, Michael; Vehtari, Aki; Corander, Jukka; Kaski, Samuel2016 SLUG transcription factor promotes cell proliferation and predicts outcome of patients with gastrointestinal stromal tumor
Sihto, Harri; Pulkka, O. P.; Nilsson, Bengt; Sarlomo-Rikala, Maarit; Reichardt, Peter; Eriksson, M.; Hall, Kirsten Sundby; Wardelmann, Eva; Vehtari, A.; Joensuu, Päivi H.2016 in EUROPEAN JOURNAL OF CANCER (ELSEVIER SCI LTD)ISSN: 0959-8049Erratum to: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Vehtari, Aki; Gelman, Andrew; Gabry, Jonah2016 in Statistics and Computing (ELSEVIER SCI LTD)ISSN: 0960-3174
On the hyperprior choice for the global shrinkage parameter in the horseshoe prior
Bayesian optimization with virtual derivative sign observations
Automatic detection of acute kidney injury episodes from primary care data
Projection predictive model selection for Gaussian processes
Chained Gaussian Processes
Automatic monotonicity detection for Gaussian Processes
Expectation propagation for likelihoods depending on an inner product of two multivariate random variables
Hierarchical Bayesian survival analysis and projective covariate selection in cardiovascular event risk prediction
Catching Physiological Noise: Comparison of DRIFTER in Image and k-Space
Expectation propagation for nonstationary heteroscedastic Gaussian process regression
Volumetric space-time structure of physiological noise in BOLD fMRI
Identification of Spatio-Temporal Oscillatory Signal Structure in Cerebral Hemodynamics Using DRIFTER.
Dynamical statistical modeling of physiological noise for fast BOLD fMRI
Speeding up the binary Gaussian process classification
Features and metric from a classifier improve visualizations with dimension reduction
Gaussian process regression with Student-t likelihood
Approximate Inference in Disease Mapping with Sparse Log Gaussian Process Priors
Modelling local and global phenomena with sparse Gaussian processes
A quantitative Bayesian approach to metabonomic 1H NMR data of serum
Prediction of ESTSP Competition Time Series by Unscented Kalman Filter and RTS Smoother
NMR Metabonomics as a Potential Reciipe Against Natural Fuzziness in the Borderline of Health and Disease
A Bayesian approach to select linearly separable spectral feature combinations
A Hierarchical Paradigm for Knowledge Discovery: Towards Biomedical Utilisation of 1H NMR Metabonomics
A Novel Bayesian Approach for Uncovering Potential Spectroscopic Counterparts for Clinical Variables in 1H NMR Metabonomic Applications
Rao-Blackwellized Monte Carlo Data Association for Multiple Target Tracking
Time series prediction by Kalman smoother with cross validated noise density
Bayesian techniques for neural networks - review and case studies.
On MCMC sampling in Bayesian MLP neural networks
Bayesian MLP neural networks - review and case studies.
Forest change detection via Landsat TM difference features
Application of Bayesian Neural Network in Electrical Impedance Tomography
Bayesian Neural Network to Solve the Inverse Problem in Electrical Impedance Tomography
Bayesian Neural Networks for Image Analysis
Bayesian Neural Networks with Correlating Residuals
Bayesian Neural Networks for Industrial Applications
Bayesian Neural Networks with Correlating Residuals
Forest scene classification: Comparison of classifiers
Using Bayesian neural networks to classify forest scenes
Gaussian process modeling in approximate Bayesian computation to estimate horizontal gene transfer in bacteria
Discussion to 'Riemann manifold Langevin and Hamiltonian Monte Carlo methods'
Unrefereed conference proceedingsUser Modelling for Avoiding Overfitting in Interactive Knowledge Elicitation for Prediction
Daee, Pedram; Peltola, Tomi; Vehtari, Aki; Kaski, Samuel2017 Scientific books (monographs)
BookBayesian Data Analysis
Gelman, Andrew; Carlin, John B.; Stern, Hal S.; Dunson, David B.; Vehtari, Aki; Rubin, Donald B.2013 ISBN: 9781439840955Publications intended for professional communities
Published development or research reportEfficient acquisition rules for model-based approximate Bayesian computation
Järvenpää, Marko; Gutmann, Michael; Vehtari, Aki; Marttinen, Pekka2017 On the Hyperprior Choice for the Global Shrinkage Parameter in the Horseshoe Prior
Piironen, Juho; Vehtari, Aki2016 Pareto Smoothed Importance Sampling
Vehtari, Aki; Gelman, Andrew; Gabry, Jonah2016 Hierarchical expectation propagation for Bayesian aggregation of average data
Weber, Sebastian; Gelman, Andrew; Carpenter, Bob; Lee, Daniel ; Betancourt, Michael; Vehtari, Aki; Racine, Amy2016 Bayesian inference for spatio-temporal spike and slab priors
Andersen, Michael Riis; Vehtari, Aki; Winther, Ole; Hansen, Lars Kai2015 Brain-to-brain hyperclassification reveals action-specific motor mapping of observed actions in humans
Smirnov, Dmitry; Lachat, Fanny; Peltola, Tomi; Lahnakoski, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Vehtari, Aki; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri2015 1H NMR spectroscopy in computational medicine
Mäkinen, V.-P.; Soininen, P.; Tukiainen, T.; Niemi, J.; Jylänki, P.; Kangas, A.J.; Peltola, T.; Hokkanen, J.; Kumpula, L.; Ojanen, J.; Sandholm, N.; Forsblom, C.; Vehtari, A.; Groop, P.-H.; Kaski, K.; Ala-Korpela, M.2008 Automatic fMRI-guided MEG multidipole localization for visual responses.
Auranen, T.; Nummenmaa, A.; Vanni, S.; Vehtari, A.; Hämäläinen, M.S.; Lampinen, J.; Jääskeläinen, I.P.2007 A Bayesian approach to metabonomic 1H NMR data of serum
Jylänki, Pasi; Niemi, Jaakko; Lankinen, Niko; Salminen, Aino; Vehtari, Aki; Ala-Korpela, Mika2007 Sparse MEG inverse solutiona via hierarchical Bayesian modeling: Evaluation with a parallel fMRI study
Nummenmaa, Aapo; Auranen, Toni; Vanni, Simo; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Vehtari, Aki; Sams, Mikko2007 Cortically constrained neuromagnitic inverse analysis: structure of Bayesian multidipolar solutions and effects of MEG-MRI coregistration error
Auranen, Toni; Nummenmaa, Aapo; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Vehtari, Aki; Sams, Mikko2006 Inverse estimates of basic auditory and visual MEG responses by hierarchical Variational Bayesian approach
Nummenmaa, Aapo; Auranen, Toni; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Sams, Mikko; Vehtari, Aki2006 Rao-Blackwellized Particle Filter for Tracking Unknown Number of Targets in Clutter
Särkkä, Simo; Vehtari, Aki; Lampinen, Jouko2005 Full Bayesian Analysis of the MEG Inverse Problem with 1 p-norm Priors.
Auranen, T.; Nummenmaa, A.; Hämäläinen, M.S.; Jääskeläinen, I.P.; Lampinen, J.; Vehtari, A.; Sams, M.2004 A Hierarchical Bayesian Approach in distributed MEG source Modelling
Nummenmaa, A.; Auranen, T.; Hämäläinen, M.S.; Jääskeläinen, I.P.; Lampinen, J.; Sams, M.; Vehtari, A.2004 Probabilistic methods in multiple target tracking - Review and bibliography
Särkkä, Simo; Tamminen, Toni; Vehtari, Aki; Lampinen, Jouko2004 Model selection via predictive explanatory power
Vehtari, Aki; Lampinen, Jouko2004 Bayesian Input Variable Selection Using Posterior Probabilities and Expected Utilities
Vehtari, Aki; Lampinen, Jouko2002 On Bayesian Model Asessment and Choice Using Cross-Validation Predictive Densities
Vehtari, Aki; Lampinen, Jouko2001 Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities
Vehtari, Aki; Lampinen, Jouko2001 Bayesian model assesment and comparison using cross-validation predictive densities
Vehtari, Aki; Lampinen, Jouko2001 Bayesian Input Variable Selection Using Cross-Validation Predictive Densities and Reversible Jump MCMC
Vehtari, Aki; Lampinen, Jouko2001 Publications intended for the general public
Popular article, newspaper articleAlkoholikuolleisuuden alueelliset erot Suomessa 2000-luvun alussa
Vanhatalo, Jarno; Mäkelä, Pia; Vehtari, Aki2010 in YHTEISKUNTAPOLITIIKKA (arXiv.org)ISSN: 1455-6901Audiovisual material, ICT software
ICT programs or applicationsMCMC Diagnostics for Matlab 6.x
Särkkä, Simo; Vehtari, Aki2003 FBM tools for Matlab 6.x, Version 1.0
Särkkä, Simo; Vehtari, Aki2003 Using stacking to average Bayesian predictive distributions
Yao, Yuling; Vehtari, Aki; Simpson, Daniel; Gelman, Andrew2017 in arXiv.org (arXiv.org)ELFI: Engine for Likelihood-Free Inference
Kangasrääsiö, Antti; Lintusaari, Jarno; Skyten, Kusti; Järvenpää, Marko; Vuollekoski, Henri; Gutmann, Michael; Vehtari, Aki; Corander, Jukka; Kaski, Samuel2016 SLUG transcription factor promotes cell proliferation and predicts outcome of patients with gastrointestinal stromal tumor
Sihto, Harri; Pulkka, O. P.; Nilsson, Bengt; Sarlomo-Rikala, Maarit; Reichardt, Peter; Eriksson, M.; Hall, Kirsten Sundby; Wardelmann, Eva; Vehtari, A.; Joensuu, Päivi H.2016 in EUROPEAN JOURNAL OF CANCER (ELSEVIER SCI LTD)ISSN: 0959-8049Erratum to: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Vehtari, Aki; Gelman, Andrew; Gabry, Jonah2016 in Statistics and Computing (ELSEVIER SCI LTD)ISSN: 0960-3174
User Modelling for Avoiding Overfitting in Interactive Knowledge Elicitation for Prediction
Bayesian Data Analysis
Publications intended for professional communities
Published development or research reportEfficient acquisition rules for model-based approximate Bayesian computation
Järvenpää, Marko; Gutmann, Michael; Vehtari, Aki; Marttinen, Pekka2017 On the Hyperprior Choice for the Global Shrinkage Parameter in the Horseshoe Prior
Piironen, Juho; Vehtari, Aki2016 Pareto Smoothed Importance Sampling
Vehtari, Aki; Gelman, Andrew; Gabry, Jonah2016 Hierarchical expectation propagation for Bayesian aggregation of average data
Weber, Sebastian; Gelman, Andrew; Carpenter, Bob; Lee, Daniel ; Betancourt, Michael; Vehtari, Aki; Racine, Amy2016 Bayesian inference for spatio-temporal spike and slab priors
Andersen, Michael Riis; Vehtari, Aki; Winther, Ole; Hansen, Lars Kai2015 Brain-to-brain hyperclassification reveals action-specific motor mapping of observed actions in humans
Smirnov, Dmitry; Lachat, Fanny; Peltola, Tomi; Lahnakoski, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Vehtari, Aki; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri2015 1H NMR spectroscopy in computational medicine
Mäkinen, V.-P.; Soininen, P.; Tukiainen, T.; Niemi, J.; Jylänki, P.; Kangas, A.J.; Peltola, T.; Hokkanen, J.; Kumpula, L.; Ojanen, J.; Sandholm, N.; Forsblom, C.; Vehtari, A.; Groop, P.-H.; Kaski, K.; Ala-Korpela, M.2008 Automatic fMRI-guided MEG multidipole localization for visual responses.
Auranen, T.; Nummenmaa, A.; Vanni, S.; Vehtari, A.; Hämäläinen, M.S.; Lampinen, J.; Jääskeläinen, I.P.2007 A Bayesian approach to metabonomic 1H NMR data of serum
Jylänki, Pasi; Niemi, Jaakko; Lankinen, Niko; Salminen, Aino; Vehtari, Aki; Ala-Korpela, Mika2007 Sparse MEG inverse solutiona via hierarchical Bayesian modeling: Evaluation with a parallel fMRI study
Nummenmaa, Aapo; Auranen, Toni; Vanni, Simo; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Vehtari, Aki; Sams, Mikko2007 Cortically constrained neuromagnitic inverse analysis: structure of Bayesian multidipolar solutions and effects of MEG-MRI coregistration error
Auranen, Toni; Nummenmaa, Aapo; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Vehtari, Aki; Sams, Mikko2006 Inverse estimates of basic auditory and visual MEG responses by hierarchical Variational Bayesian approach
Nummenmaa, Aapo; Auranen, Toni; Hämäläinen, Matti S.; Jääskeläinen, Iiro P.; Lampinen, Jouko; Sams, Mikko; Vehtari, Aki2006 Rao-Blackwellized Particle Filter for Tracking Unknown Number of Targets in Clutter
Särkkä, Simo; Vehtari, Aki; Lampinen, Jouko2005 Full Bayesian Analysis of the MEG Inverse Problem with 1 p-norm Priors.
Auranen, T.; Nummenmaa, A.; Hämäläinen, M.S.; Jääskeläinen, I.P.; Lampinen, J.; Vehtari, A.; Sams, M.2004 A Hierarchical Bayesian Approach in distributed MEG source Modelling
Nummenmaa, A.; Auranen, T.; Hämäläinen, M.S.; Jääskeläinen, I.P.; Lampinen, J.; Sams, M.; Vehtari, A.2004 Probabilistic methods in multiple target tracking - Review and bibliography
Särkkä, Simo; Tamminen, Toni; Vehtari, Aki; Lampinen, Jouko2004 Model selection via predictive explanatory power
Vehtari, Aki; Lampinen, Jouko2004 Bayesian Input Variable Selection Using Posterior Probabilities and Expected Utilities
Vehtari, Aki; Lampinen, Jouko2002 On Bayesian Model Asessment and Choice Using Cross-Validation Predictive Densities
Vehtari, Aki; Lampinen, Jouko2001 Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities
Vehtari, Aki; Lampinen, Jouko2001 Bayesian model assesment and comparison using cross-validation predictive densities
Vehtari, Aki; Lampinen, Jouko2001 Bayesian Input Variable Selection Using Cross-Validation Predictive Densities and Reversible Jump MCMC
Vehtari, Aki; Lampinen, Jouko2001 Publications intended for the general public
Popular article, newspaper articleAlkoholikuolleisuuden alueelliset erot Suomessa 2000-luvun alussa
Vanhatalo, Jarno; Mäkelä, Pia; Vehtari, Aki2010 in YHTEISKUNTAPOLITIIKKA (arXiv.org)ISSN: 1455-6901Audiovisual material, ICT software
ICT programs or applicationsMCMC Diagnostics for Matlab 6.x
Särkkä, Simo; Vehtari, Aki2003 FBM tools for Matlab 6.x, Version 1.0
Särkkä, Simo; Vehtari, Aki2003 Using stacking to average Bayesian predictive distributions
Yao, Yuling; Vehtari, Aki; Simpson, Daniel; Gelman, Andrew2017 in arXiv.org (arXiv.org)ELFI: Engine for Likelihood-Free Inference
Kangasrääsiö, Antti; Lintusaari, Jarno; Skyten, Kusti; Järvenpää, Marko; Vuollekoski, Henri; Gutmann, Michael; Vehtari, Aki; Corander, Jukka; Kaski, Samuel2016 SLUG transcription factor promotes cell proliferation and predicts outcome of patients with gastrointestinal stromal tumor
Sihto, Harri; Pulkka, O. P.; Nilsson, Bengt; Sarlomo-Rikala, Maarit; Reichardt, Peter; Eriksson, M.; Hall, Kirsten Sundby; Wardelmann, Eva; Vehtari, A.; Joensuu, Päivi H.2016 in EUROPEAN JOURNAL OF CANCER (ELSEVIER SCI LTD)ISSN: 0959-8049Erratum to: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Vehtari, Aki; Gelman, Andrew; Gabry, Jonah2016 in Statistics and Computing (ELSEVIER SCI LTD)ISSN: 0960-3174
Efficient acquisition rules for model-based approximate Bayesian computation
On the Hyperprior Choice for the Global Shrinkage Parameter in the Horseshoe Prior
Pareto Smoothed Importance Sampling
Hierarchical expectation propagation for Bayesian aggregation of average data
Bayesian inference for spatio-temporal spike and slab priors
Brain-to-brain hyperclassification reveals action-specific motor mapping of observed actions in humans
1H NMR spectroscopy in computational medicine
Automatic fMRI-guided MEG multidipole localization for visual responses.
A Bayesian approach to metabonomic 1H NMR data of serum
Sparse MEG inverse solutiona via hierarchical Bayesian modeling: Evaluation with a parallel fMRI study
Cortically constrained neuromagnitic inverse analysis: structure of Bayesian multidipolar solutions and effects of MEG-MRI coregistration error
Inverse estimates of basic auditory and visual MEG responses by hierarchical Variational Bayesian approach
Rao-Blackwellized Particle Filter for Tracking Unknown Number of Targets in Clutter
Full Bayesian Analysis of the MEG Inverse Problem with 1 p-norm Priors.
A Hierarchical Bayesian Approach in distributed MEG source Modelling
Probabilistic methods in multiple target tracking - Review and bibliography
Model selection via predictive explanatory power
Bayesian Input Variable Selection Using Posterior Probabilities and Expected Utilities
On Bayesian Model Asessment and Choice Using Cross-Validation Predictive Densities
Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities
Bayesian model assesment and comparison using cross-validation predictive densities
Bayesian Input Variable Selection Using Cross-Validation Predictive Densities and Reversible Jump MCMC
Alkoholikuolleisuuden alueelliset erot Suomessa 2000-luvun alussa
Audiovisual material, ICT software
ICT programs or applicationsMCMC Diagnostics for Matlab 6.x
Särkkä, Simo; Vehtari, Aki2003 FBM tools for Matlab 6.x, Version 1.0
Särkkä, Simo; Vehtari, Aki2003 Using stacking to average Bayesian predictive distributions
Yao, Yuling; Vehtari, Aki; Simpson, Daniel; Gelman, Andrew2017 in arXiv.org (arXiv.org)ELFI: Engine for Likelihood-Free Inference
Kangasrääsiö, Antti; Lintusaari, Jarno; Skyten, Kusti; Järvenpää, Marko; Vuollekoski, Henri; Gutmann, Michael; Vehtari, Aki; Corander, Jukka; Kaski, Samuel2016 SLUG transcription factor promotes cell proliferation and predicts outcome of patients with gastrointestinal stromal tumor
Sihto, Harri; Pulkka, O. P.; Nilsson, Bengt; Sarlomo-Rikala, Maarit; Reichardt, Peter; Eriksson, M.; Hall, Kirsten Sundby; Wardelmann, Eva; Vehtari, A.; Joensuu, Päivi H.2016 in EUROPEAN JOURNAL OF CANCER (ELSEVIER SCI LTD)ISSN: 0959-8049Erratum to: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Vehtari, Aki; Gelman, Andrew; Gabry, Jonah2016 in Statistics and Computing (ELSEVIER SCI LTD)ISSN: 0960-3174
MCMC Diagnostics for Matlab 6.x
FBM tools for Matlab 6.x, Version 1.0
Using stacking to average Bayesian predictive distributions
ELFI: Engine for Likelihood-Free Inference
SLUG transcription factor promotes cell proliferation and predicts outcome of patients with gastrointestinal stromal tumor
Erratum to: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Videos
StanCon 2020. Developer Talk 1. Aki Vehtari. posteriordb: a database
BDA 2019 Lecture 11.1 Normal approximation, Laplace approximation.
BDA 2019 Lecture 12.1 Frequency evaluation, hypothesis testing, and variable selection
Regularized Horseshoe - Aki Vehtari
Tutorial: Model assessment, selection and inference after model selection - Aki Vehtari
Aki Vehtari - Gaussian processes for survival analysis
BDA 2019 Lecture 10.1 Decision analysis
Model assessment and selection - Aki Vehtari
Aki Vehtari - On Bayesian Workflow
Practical pre-asymptotic diagnostic of Monte Carlo estimates
Aki Vehtari: "Computational probabilistic modeling"
BDA course 1.2 Introduction to the course contents
Read about executive education
Other experts
Kathleen Frey
Degrees BA & MA, Criminal Justice, SUNY Albany PhD (In Progress), Criminology and Criminal justice, University of Maryland Bio Katie Frey is currently finishing her PhD at the University of Maryland College Park. Her dissertation is on the effects of prison versus jail on recidivism using a...
Patricia Langohr
Education Ph.D. Managerial Economics and Strategy, Kellogg School of Management, Northwestern University, Evanston, Illinois,December 2003. Dissertation: "Competitive Convergence and Equilibrium Industry Dynamics", Committee Chairperson: Professor David Besanko. Diplom Volkswirtin: Humboldt-Unive...
Neal Snow
Neal M. Snow earned his doctorate in accounting at the University of South Florida, and a master’s and bachelor’s in accounting at Utah State University. Before earning his doctorate, Snow worked at Deloitte in Houston, and Goldman Sachs and Co. in New York, London and Salt Lake City. His researc...
Looking for an expert?
Contact us and we'll find the best option for you.