Tapani Raiko

Academy Research Fellow at Aalto University School of Business

Schools

  • Aalto University School of Business

Links

Biography

Aalto University School of Business

Research on deep learning, which is a novel type of machine learning based on artificial neural networks, applicable to large data analysis tasks such as computer vision or natural language processing.

Peer-reviewed scientific articles

Journal article-refereed, Original research

Measuring the usefulness of hidden units in Boltzmann machines with mutual information

Berglund, Mathias; Raiko, Tapani; Cho, Kyunghyun
2015 in NEURAL NETWORKS (PERGAMON-ELSEVIER SCIENCE LTD)
ISSN: 0893-6080

Two-layer contractive encodings for learning stable nonlinear features

Schulz, Hannes; Cho, Kyunghyun; Raiko, Tapani; Behnke, Sven
2015 in NEURAL NETWORKS (PERGAMON-ELSEVIER SCIENCE LTD)
ISSN: 0893-6080

Self-organization and missing values in SOM and GTM

Vatanen, T.; Osmala, M.; Raiko, T.; Lagus, K.; Sysi-Aho, M.; Orešič, M.; Honkela, T.; Lähdesmäki, H.
2015 in NEUROCOMPUTING (Elsevier Science B.V.)
ISSN: 0925-2312

Enhanced Gradient for Training Restricted Boltzmann Machines

Cho, K.; Raiko, T.; Ilin, A.
2013 in NEURAL COMPUTATION (MIT PRESS)
ISSN: 0899-7667

Semi-Supervised Anomaly Detection - Towards Model-Independent Searches of New Physics

Kuusela, Mikael; Malmi, Eric; Raiko, Tapani; Vatanen, Tommi
2012 in Journal of Physics: Conference Series (IOP Publishing Ltd.)
ISSN: 1742-6588

Missing-feature reconstruction with a bounded nonlinear state-space model

Remes, Ulpu; Palomäki, Kalle J.; Raiko, Tapani; Honkela, Antti; Kurimo, Mikko
2011 in IEEE SIGNAL PROCESSING LETTERS (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC)
ISSN: 1070-9908

Approximate Riemannian Conjugate Gradient Learning for Fixed-Form Variational Bayes

Honkela, Antti; Raiko, Tapani; Kuusela, Mikael; Tornio, Matti; Karhunen, Juha
2010 in JOURNAL OF MACHINE LEARNING RESEARCH (MICROTOME PUBL)
ISSN: 1532-4435

Practical Approaches to Principal Component Analysis in the Presence of Missing Values

Ilin, Alexander; Raiko, Tapani
2010 in JOURNAL OF MACHINE LEARNING RESEARCH (MICROTOME PUBL)
ISSN: 1532-4435

Variational Bayesian learning of nonlinear hidden state-space models for model predictive control

Raiko, Tapani; Tornio, Matti
2009 in NEUROCOMPUTING (Elsevier Science B.V.)

Building Blocks for Variational Bayesian Learning of Latent Variable Models

Raiko, Tapani; Valpola, Harri; Harva, Markus; Karhunen, Juha
2007 in JOURNAL OF MACHINE LEARNING RESEARCH (MICROTOME PUBL)

Logical Hidden Markov Models

Kersting, Kristian; De Raedt, Luc; Raiko, Tapani
2006 in JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH (Morgan Kaufmann Publishers, Inc.)
ISSN: 1076-9757

Book section, Chapters in research books

How to Pretrain Deep Boltzmann Machines in Two Stages

Cho, KyungHyun; Raiko, Tapani; Ilin, Alexander; Karhunen, Juha
2015
ISBN: 978-3-319-09903-3

Oscillatory Neural Network for Image Segmentation (Chapter 7) with Biased Competition for Attention

Raiko, Tapani; Valpola, Harri
2011
ISBN: 978-1-4614-0163-6
ISSN: 0065-2598

Conference proceedings

Semi-Supervised Domain Adaptation for Weakly Labeled Semantic Video Object Segmentation

Wang, Huiling ; Raiko, Tapani; Lensu, Lasse; Wang, Tinghuai; Karhunen, Juha
2017 in Lecture Notes in Computer Science (SPRINGER)
ISBN: 9783319541815
ISSN: 0302-9743

Ladder Variational Autoencoders

Kaae Sønderby, Casper; Raiko, Tapani; Maaløe, Lars; Kaae Sønderby, Søren; Winther, Ole
2016 in Advances in neural information processing systems (Neural Information Processing Systems Foundation)
ISSN: 1049-5258

Scalable gradient-based tuning of continuous regularization hyperparameters

Luketina, Jelena; Berglund, Mathias; Greff, Klaus; Raiko, Tapani
2016
ISBN: 9781510829008

DopeLearning A computational approach to rap lyrics generation

Malmi, Eric; Takala, Pyry; Toivonen, Hannu; Raiko, Tapani; Gionis, Aristides
2016
ISBN: 9781450342322

Bidirectional recurrent neural networks as generative models

Berglund, Mathias; Raiko, Tapani; Honkala, Mikko; Kärkkäinen, Leo; Vetek, Akos; Karhunen, Juha
2015
ISSN: 1049-5258

Iterative Neural Autoregressive Distribution Estimator (NADE-k)

Raiko, Tapani; Yao, Li; Cho, KyungHyun; Bengio, Yoshua
2015
ISSN: 1049-5258

Semi-supervised learning with Ladder networks

Rasmus, Antti; Valpola, Harri; Honkala, Mikko; Berglund, Mathias; Raiko, Tapani
2015
ISSN: 1049-5258

Linear State-Space Model with Time-Varying Dynamics

Luttinen, Jaakko; Raiko, Tapani; Ilin, Alexander
2014
ISBN: 978-3-662-44850-2

Iterative neural autoregressive distribution estimator (NADE-k)

Raiko, Tapani; Yao, Li; Cho, KyungHyun; Bengio, Yoshua
2014

Measuring the Usefulness of Hidden Units in Boltzmann Machines with Mutual Information

Berglund, Mathias; Raiko, Tapani; Cho, KyungHyun
2013
ISBN: 978-3-642-42053-5

A Two-stage Pretraining Algorithm for Deep Boltzmann Machines

Cho, KyungHyun; Raiko, Tapani; Ilin, Alexander; Karhunen, Juha
2013
ISBN: 978-3-642-40727-7

Gaussian-Bernoulli Deep Boltzmann Machines

Cho, KyungHyun; Raiko, Tapani; Ilin, Alexander
2013

Gaussian-Bernoulli restricted Boltzmann machines and automatic feature extraction for noise robust missing data mask estimation

Keronen, Sami; Cho, KyungHyun; Raiko, Tapani; Ilin, Alexander; Palomäki, Kalle J.
2013 in International Conference on Acoustics Speech and Signal Processing ICASSP (SPRINGER GABLER)
ISBN: 978-1-4799-0356-6
ISSN: 1520-6149

Variational Bayesian PCA versus k-NN on a Very Sparse Reddit Voting Dataset

Klapuri, Jussa; Nieminen, Ilari T.; Raiko, Tapani; Lagus, Krista
2013
ISBN: 978-3-642-41397-1

Two-Layer Contractive Encodings with Linear Transformation of Perceptrons for Semi-Supervised Learning

Schulz, Hannes; Cho, Kyunghyun; Raiko, Tapani; Behnke, Sven
2013
ISBN: 978-3-642-42042-9

Two-layer contractive encodings with shortcuts for semi-supervised learning

Schulz, Hannes; Cho, Kyunghyun; Raiko, Tapani; Behnke, Sven
2013 in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (SPRINGER GABLER)
ISBN: 9783642420535
ISSN: 0302-9743

Pushing Stochastic Gradient towards Second-Order Methods - Backpropagation Learning with Transformations in Nonlinearities

Vatanen, Tommi; Raiko, Tapani; Valpola, Harri; LeCun, Yann
2013
ISBN: 978-3-642-42042-9

Controlling Self-Organization and Handling Missing Values in SOM and GTM

Vatanen, Tommi; Nieminen, Ilari T.; Honkela, Timo; Raiko, Tapani; Lagus, Krista
2013
ISBN: 978-3-642-35229-4

Learning Deep Belief Networks from Non-Stationary Streams

Calandra, R.; Raiko, T.; Pouzols, Montesino
2012
ISBN: 978-3-642-33269-2
ISSN: 0302-9743

Tikhonov-Type Regularization for Restricted Boltzmann Machines

Cho, K.; Ilin, A.; Raiko, T.
2012
ISBN: 978-3-642-33268-5
ISSN: 0302-9743

A Two-stage Pretraining Algorithm for Deep Boltzmann Machines

Cho, KyungHyun; Raiko, Tapani; Ilin, Alexander; Karhunen, Juha
2012

Reinforcement Learning in Real-Time Strategy Games

Raiko, Tapani
2012

Towards Generalizing the Success of Monte-Carlo Tree Search beyond the Game of Go

Raiko, Tapani
2012
ISBN: 978-1-61499-097-0

Deep learning made easier by linear transformations in perceptrons

Raiko, Tapani; Valpola, Harri; LeCun, Yann
2012
ISSN: 1532-4435

Hybrid Bilinear and Trilinear Models for Exploratory Analysis of Three-Way Poisson Counts

Raitio, Juha; Raiko, Tapani; Honkela, Timo
2012
ISBN: 978-3-642-33265-4
ISSN: 0302-9743

Semi-Supervised Detection of Collective Anomalies with an Application in High Energy Particle Physics

Vatanen, Tommi; Kuusela, Mikael; Malmi, Eric; Raiko, Tapani; Aaltonen, Timo; Nagai, Yoshikazu
2012
ISBN: 978-1-4673-1488-6

Improved Learning of Gaussian-Bernoulli Restricted Boltzmann Machines

Cho, KyungHyun; Ilin, Alexander; Raiko, Tapani
2011

Gaussian-Bernoulli Deep Boltzmann Machine

Cho, KyungHyun; Raiko, Tapani; Ilin, Alexander
2011

Enhanced Gradient and Adaptive Learning Rate for Training Restricted Boltzmann Machines

Cho, KyungHyun; Raiko, Tapani; Ilin, Alexander
2011

Deep Learning Made Easier by Linear Transformations in Perceptrons

Raiko, Tapani; Valpola, Harri; LeCun, Yann
2011

Enhanced Gradient for Learning Boltzmann Machines

Raiko, Tapani; Cho, KyungHyun; Ilin, Alexander
2011

Parallel Tempering is Efficient for Learning Restricted Boltzmann Machines

Cho, KyungHyun; Raiko, Tapani; Ilin, Alexander
2010

Novelty detection by nonlinear factor analysis for structural health monitoring

Lämsä, Ville; Raiko, Tapani
2010
ISBN: 978-1-4244-7875-0
ISSN: 1551-2541

Document Classification Utilising Ontologies and Relations between Documents

Nyberg, Katariina; Raiko, Tapani; Tiinanen, Teemu; Hyvönen, Eero
2010

Oscillatory Neural Network for Image Segmentation with Biased Competition for Attention

Raiko, Tapani; Valpola, Harri
2010

Extending Self-Organizing Maps with Uncertainty Information of Probabilistic PCA

Sovilj, Dusan; Raiko, Tapani; Oja, Erkki
2010

Binary Principal Component Analysis in the Netflix Collaborative Filtering Task

Kozma, Laszlo; Ilin, Alexander; Raiko, Tapani
2009

A Gradient-Based Algorithm Competitive with Variational Bayesian EM for Mixture of Gaussians

Kuusela, Mikael; Raiko, Tapani; Honkela, Antti; Karhunen, Juha
2009

Transformations for Variational Factor Analysis to Speed up Learning

Luttinen, Jaakko; Ilin, Alexander; Raiko, Tapani
2009

Learning mixture models - courseware for finite mixture distributions of multivariate Bernoulli distributions

Hollmén, Jaakko; Raiko, Tapani
2008

Natural Conjugate Gradient in Variational Inference

Honkela, Antti; Tornio, Matti; Raiko, Tapani; Karhunen, Juha
2008

Variational Inference and Learning for Continuous-Time Nonlinear State-Space Models

Honkela, Antti; Harva, Markus; Raiko, Tapani; Karhunen, Juha
2008

Macadamia: Master's Programme in Machine Learning and Data Mining

Raiko, Tapani; Puolamäki, Kai; Karhunen, Juha; Hollmén, Jaakko; Honkela, Antti; Kaski, Samuel; Mannila, Heikki; Oja, Erkki; Simula, Olli
2008

Principal Component Analysis for Sparse High-Dimensional Data

Raiko, Tapani; Ilin, Alexander; Karhunen, Juha
2008

Application of UCT Search to the Connection Games of Hex, Y, *Star, and Renkula!

Raiko, Tapani; Peltonen, Jaakko
2008

Principal Component Analysis for Large Scale Problems with Lots of Missing Values

Raiko, Tapani; Ilin, Alexander; Karhunen, Juha
2007

State Inference in Variational Bayesian Nonlinear State-Space Models

Raiko, Tapani; Tornio, Matti; Honkela, Antti; Karhunen, Juha
2006
ISBN: 3-540-32630-8
ISSN: 0302-9743

Higher order statistics in play-out analysis

Raiko, Tapani
2006
ISBN: 952-5677-00-1
ISSN: 1238-4658

Variational Bayesian Approach for Nonlinear Identification and Control

Tornio, Matti; Raiko, Tapani
2006

Bayes Blocks: An Implementation of the Variational Bayesian Building Blocks Framework

Harva, M.; Raiko, T.; Honkela, A.; Valpola, H.; Karhunen, J.
2005

'Say EM' for Selecting Probabilistic Models for Logical Sequences

Kersting, K.; Raiko, T.
2005

Learning Nonlinear State-Space Models for Control

Raiko, T.; Tornio, M.
2005

Nonlinear Relational Markov Networks with an Application to the Game of Go

Raiko, T.
2005

Partially Observed Values

Raiko, Tapani
2004

The Go-Playing Program Called Go81

Raiko, Tapani
2004

A Structural GEM for Learning Logical Hidden Markov Models

Kersting, K.; Raiko, T.; De Raedt, L.
2003

Towards Discovering Structural Signatures of Protein Folds based on Logical Hidden Markov Models

Kersting, K.; Raiko, T.; Kramer, S.; De Raedt, L.
2003

Missing Values in Hierarchical Nonlinear Factor Analysis

Raiko, Tapani; Valpola, H.; Östman, T.; Karhunen, J.
2003

Logical Hidden Markov Models (Extended Abstract)

Kersting, K.; Raiko, Tapani; De Raedt, L.
2002

Towards Discovering Structural Signatures of Protein Folds based on Logical Hidden Markov Models (Extended abstract)

Kersting, K.; Raiko, Tapani; Kramer, S.; De Raedt, L.
2002

Bayesian Learning of Logical Hidden Markov Models

Raiko, Tapani; Kersting, K.; Karhunen, J.; De Raedt, L.
2002

Constructing Graphical Models for Bayesian Ensemble Learning from Simple Building Blocks

Valpola, Harri; Raiko, T.; Karhunen, J.
2002

Building Blocks for Hierarchical Latent Variable Models

Valpola, Harri; Raiko, T.; Karhunen, J.
2001

Non-refereed scientific articles

Book section

Unsupervised Deep Learning: A Short Review

Karhunen, J.; Raiko, T.; Cho, K.
2015
ISBN: 9780128028063

Unrefereed conference proceedings

Advances in Training Restricted Boltzmann Machines

Cho, K.; Raiko, Tapani; Karhunen, Juha
2012
ISBN: 978-3-642-34155-7

Scientific books (monographs)

Book (editor)

Neurocomputing, Special Issue on Machine Learning for Signal Processing 2010, 80:1-128

Peltonen, Jaakko; Raiko, Tapani; Kaski, Samuel
2012
ISSN: 0925-2312

AI and Machine Consciousness, Proceedings of the 13th Finnish Artificial Intelligence Conference (STeP 2008)

Raiko, Tapani; Haikonen, Pentti; Väyrynen, Jaakko
2008

Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence (SCAI 2006)

Honkela, Timo; Raiko, Tapani; Kortela, Jukka; Valpola, Harri
2006
ISBN: 952-5677-00-1

Developments in Artificial Intelligence and the Semantic Web - Proceedings of the 12th Finnish AI Conference STeP 2006.Finland, October 26-27, 2006

Hyvönen, Eero; Kauppinen, Tomi; Kortela, Jukka; Laukkanen, Mikko; Raiko, Tapani; Viljanen, Kim
2006
ISBN: 952-5677-02-8

Publications intended for professional communities

Article in professional journal

Jonglöörauksen matematiikka

Raiko, Tapani
2013 in Arpakannus (Finnish Artificial Intelligence Society)
ISSN: 0783-3121

Sudoku ihmisen ja koneen ratkaisemana

Raiko, Tapani
2009 in Arpakannus, Magazine of the Finnish Artificial Intelligence Society (Finnish Artificial Intelligence Society)

Article in professional conference proceedings

Understanding Regularization by Virtual Adversarial Training, Ladder Networks and Others

Abbas, Mudassar; Kivinen, Jyri; Raiko, Tapani
2016

Techniques for Learning Binary Stochastic Feedforward Neural Networks

Raiko, Pekka; Berglund, Mathias; Alain, Guillaume; Dinh, Laurent
2015

Published development or research report

How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks

Kaae Sønderby, Casper; Raiko, Tapani; Maaløe, Lars; Kaae Sønderby, Søren; Winther, Ole
2016

Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters

Luketina, Jelena; Berglund, Mathias; Raiko, Tapani
2015

Stochastic Gradient Estimate Variance in Contrastive Divergence and Persistent Contrastive Divergence

Berglund, Mathias; Raiko, Tapani
2014

Techniques for Learning Binary Stochastic Feedforward Neural Networks

Raiko, Tapani; Berglund, Mathias; Alain, Guillaume; Dinh, Laurent
2014

Derivations of the Enhanced Gradient for the Boltzmann Machine

Raiko, Tapani; Cho, KyungHyun; Ilin, Alexander
2011

Practical Approaches to Principal Component Analysis in the Presence of Missing Values

Ilin, Alexander; Raiko, Tapani
2008

Natural Conjugate Gradient in Variational Inference

Honkela, Antti; Tornio, Matti; Raiko, Tapani; Karhunen, Juha
2007

Building blocks for variational Bayesian learning of latent variable models

Raiko, Tapani; Valpola, Harri; Harva, Markus; Karhunen, Juha
2006

Missing Values in Nonlinear Factor Analysis

Raiko, Tapani; Valpola, H.
2001

Audiovisual material, ICT software

ICT programs or applications

Bayes Blocks Software Library

Valpola, H.; Honkela, A.; Harva, M.; Ilin, A.; Raiko, T.; Östman, T.
2003

Videos

Read about executive education

Other experts

Tom Rosendahl

POPULAR SCIENTIFIC ARTICLES Rosendahl, Tom; Egir, Asbjørn. Multidisiplinære team. HR Norges nyhetsbrev 2009 BI Rosendahl, Tom; Egir, Asbjørn. Suksessformel for innføring av effektive team. Ukeavisen ledelse 2009 (11) BI CHAPTERS Olaisen, Johan; Revang, Øivind; Rosendahl, Tom. Inte...

Lasse Niemi

Peer-reviewed scientific articlesJournal article-refereed, Original researchThe Demand for Voluntary Audit in Micro-Companies Evidence from FinlandOjala, Hannu; Collis, Jill; Kinnunen, Juha; Niemi, Lasse; Troberg, Pontus2016 in INTERNATIONAL JOURNAL OF AUDITING (John Wiley and Sons Ltd)ISSN: 1090...

Gita Govahi

Gita Govahi Ph.D. is the Director of the Experiential Learning Center at the USC Marshall School of Business. During her tenure, she has inaugurated a number of training programs and conducted numerous training sessions for the Marshall School's graduate, undergraduate and executive education pro...

Looking for an expert?

Contact us and we'll find the best option for you.

Something went wrong. We're trying to fix this error.