Emilio Baglietto
Associate Professor of Nuclear Science and Engineering at the Massachusetts Institute of Technology (MIT) at MIT Professional Education
Biography
MIT Professional Education
Education
PhD, Nuclear Engineering, Tokyo Institute of Technology, 2004. M.S., Nuclear Engineering, University of Pisa, 2002.
Awards
2005 Best Paper Award from the Thermal-Hydraulics Division of the American Nuclear Society, Washington D.C, November 2005. Invited Lecturer to the 2005 Dr Forum of the Atomic Energy Society of Japan, September 15th and 16th 2005, Hachinoue, JAPAN.
Research
Turbulence Modeling The availability of more robust and physically realistic turbulence models will bring immediate and major improvements to the reactor's economic and safety performance. The unique generality of the approaches that we are developing allows designing new configurations and innovative concepts, accurately reproducing complex flow and heat transfer distributions; these improvements directly translate into higher efficiency and reduced failures.
Unsteady flow phenomena Unsteady flows are often encountered in nuclear applications and can strongly affect the efficiency and reliability of components. Understanding of the underlying physical mechanism and development of groundbreaking modeling techniques is a focus of our research.
Multiphase flow and boiling Computational multi-phase flow techniques are being developed to provide a faithful representation of the complex boiling and two-phase flow regimes. Applications include the use of interface tracking techniques to develop cross-flow correlations for subchannel analysis codes and use of the Euler-Euler approach to represent the boiling phenomena in PWR and BWR cores. These methods have demonstrated great potential, and pioneering work is ongoing to bring them up to develop reliable design tools.
Virtual Reactor Modeling Development of innovative computational approaches is being incorporated with the ability of implementing full scale detailed models of reactor designs. These high quality, large scale models will incorporate validated multiphysics in order to predict complex multileveled interactions in the early stage of the design. Such innovative tool will significantly modify the project approach for advanced solutions and innovative concepts.
Recent Publications
F. Roelofs, A. Shams, I. Otic, M. Böttcher, M. Duponcheel, Y. Bartosiewicz, D. Lakehal, E. Baglietto, S. Lardeau, X. Cheng, 2015 — Status and Perspective of Turbulence Heat Transfer Modelling for the Industrial Application of Liquid Metal Flows, Nuclear Engineering and Design, In press — Available online. *L. Gilman, E. Baglietto, 2014 — A Novel Subgrid Wall Boiling Model from Improved Physical Understanding for use in Computational Fluid Dynamics — Part 1: Theoretical formulation and Implications, submitted to the International Journal of Multiphase Flow. *L. Gilman, E. Baglietto, 2014 — A Novel Subgrid Wall Boiling Model from Improved Physical Understanding for use in Computational Fluid Dynamics — Part 2: Model Evaluation and Sensitivity, submitted to the International Journal of Multiphase Flow E.A. Bates, A. Salazar, M.J. Driscoll, E. Baglietto, J. Buongiorno, 2014 — Plug Design for Deep Borehole Disposal of High-Level Nuclear Waste, Nuclear Technology 188 Issue 2. A. Shams, F. Roelofs, E. Baglietto, S. Lardeau, S. Kenjeres, 2014 — Assessment and Calibration of an Algebraic Turbulent Heat Flux Model for Low-Prandtl Fluids, International Journal of Heat and Mass Transfer 79 (2014) 589–601.
Videos
Keynote Lecture EMILIO BAGLIETTO - REMOO 2018
Courses Taught
Read about executive education
Other experts
Popular Courses
The Positive Leader: Deep Change and Organizational Transformation
Stephen M. Ross School of Business
Ann Arbor, Michigan, United States
Dec 1
Private Equity: Investing and Creating Value
The Wharton School
Philadelphia, Pennsylvania, United States
Feb 2, 2025
Leading People and Teams
ESMT
Berlin, Germany
Nov 19
Looking for an expert?
Contact us and we'll find the best option for you.