XBUS-505 Data Analysis II: Machine Learning

School of Continuing Studies

How long?

  • from 4 days
  • in person

School of Continuing Studies

Disclaimer

Coursalytics is an independent platform to find, compare, and book executive courses. Coursalytics is not endorsed by, sponsored by, or otherwise affiliated with any business school or university.

Full disclaimer.

Read more about Business Analytics

Business Analytics courses will introduce you to a popular and diverse profession. A business analyst is a specialist in many IT fields as well as in ...

Read more about Digital Transformation

Digital transformation is the process of adopting and utilizing state-of-the-art technologies in order to boost business activity, improve safety, and...

About the course

Machine learning can classically be summarized with two methodologies: supervised and unsupervised learning. In supervised learning, the “correct answers” are annotated ahead of time and the algorithm tries to fit a decision space based on those answers. In unsupervised learning, algorithms try to group like examples together, inferring similarities via distance or similarity metrics. These learning types allow us to explore data and categorize them in a meaningful way, predicting where new data will fit into our models.

Scikit-Learn is a powerful machine learning library implemented in Python with numeric and scientific computing powerhouses Numpy, Scipy, and matplotlib for extremely fast analysis of small to medium sized data sets. It is open source, commercially usable and contains many modern machine learning algorithms for classification, regression, clustering, feature extraction, and optimization. For this reason Scikit-Learn is often the first tool in a Data Scientist’s toolkit for machine learning of incoming data sets.

The purpose of this course is to serve as an introduction to Machine Learning with Scikit-Learn. We will explore several clustering, classification, and regression algorithms for a variety of machine learning tasks and learn how to implement these tasks with our data using Scikit-Learn and Python. In particular, we will structure our machine learning models as though we were producing a data product, an actionable model that can be used in larger programs or algorithms; rather than as simply a research or investigation methodology. For more on Scikit-Learn see: Six Reasons why I recommend Scikit-Learn (O’Reilly Radar).

Course Objectives

After this course you should understand the basics of machine learning and how to implement machine learning algorithms on your data sets using Python and Scikit-Learn. In particularly you should understand basic regressions, classifiers, and clustering algorithms and how to fit a model and use it to predict future outcomes.

After completion of this course students should:

  • Understand the basic mechanics of machine learning, and how machine learning differs from data mining, pattern recognition, or statistical hypothesis testing.
  • Understand the differences and data requirements for regressions, classification, and clustering machine learning methodologies.
  • Understand how to prepare and load datasets into Scikit-Learn, including normalization, standardization, and imputation techniques as well as pre-investigations of data with feature-extraction, dimension analysis, and distance metrics
  • Have reviewed the many different types of models available in Scikit-Learn and the basic API for building models and saving models to disks.
  • Be able to evaluate models using cross-validation, mean squared error, accuracy, precision, recall, and F1 scores as well as understand confusion matrices.
  • Be able to deploy models into applications or data products to receive feedback from them, retraining and reinforcing existing models.

Experts

Garin Kessler

Garin is an Adjunct Lecturer for the Georgetown Data Science Certificate and Advanced Data Science Certificate programs, where he teaches Machine Learning and Natural Language Understanding. Garin is also currently a Senior Data Science Manager at Amazon Web Services, where he leads teams of data...

XBUS-505 Data Analysis II: Machine Learning at School of Continuing Studies

From  $1,249

Something went wrong. We're trying to fix this error.

Thank you for your application

We will contact the provider to ensure that seats are available and, if there is an admissions process, that you satisfy any requirements or prerequisites.

We may ask you for additional information.

To finalize your enrollment we will be in touch shortly.

Disclaimer

Coursalytics is an independent platform to find, compare, and book executive courses. Coursalytics is not endorsed by, sponsored by, or otherwise affiliated with any business school or university.

Full disclaimer.

Read more about Business Analytics

What will you learn from Business Analytics courses? First of all, you will learn about the profession of a business analyst, his duties, and what such a specialist does. You will get various soft skills, such as organizing teamwork, for example, acc...

Read more about Digital Transformation

When it comes to imposing digital frameworks and technologies, whether you’re trying to optimize particular units or the entire organization, you need to minimize the collateral damage in order to have a greater effect. However, it's not always that ...

Because of COVID-19, many providers are cancelling or postponing in-person programs or providing online participation options.

We are happy to help you find a suitable online alternative.