Machine Learning Foundations

University of Technology Sydney

How long?

  • 10 weeks
  • online

What are the topics?

University of Technology Sydney

Disclaimer

Coursalytics is an independent platform to find, compare, and book executive courses. Coursalytics is not endorsed by, sponsored by, or otherwise affiliated with any business school or university.

Full disclaimer.

Read more about Information Technology

Information technology is at the heart of any process connected to utilizing computers and communication systems. It is a quite broad term that is use...

Who should attend

This microcredential is accessible to participants with basic mathematical proficiency (linear algebra and statistics) and some programming experience in Python.

UTS microcredentials are developed for professionals with a capacity to undertake postgraduate tertiary education.

About the course

A comprehensive introduction to the fundamentals of machine learning for information technology professionals with no explicit background in the field.

About this course

This microcredential introduces the essential elements of machine learning - a technique that enables a machine to learn from data, to automatically derive, or enhance its strategy to perform tasks.

Taking a research-inspired approach, the course guides participants to apply state-of-the-art algorithms in their professional practice, with a focus on practical applications.

The course presents participants with core concepts in machine learning as well as a generic framework. Basic learning models, including decision trees and linear families demonstrate the theory of machine learning and some real-world applications.

Course outline

This course has been designed to provide you with an applied introduction to the field of machine learning, and an orientation to its different usages. It has been designed by the UTS Faculty of Engineering and Information Technology, leveraging the faculty's unique expertise in the area of artificial intelligence.

In this course you will meet (virtually) and work with a dedicated course facilitator, who supports your learning and engagement with the teaching resources designed by the lead academic and a team of experts from the Faculty of Engineering and Information Technology at UTS.

There are five modules, each featuring self-study materials and facilitated online sessions:

  1. Machine learning problems

This introductory module will provide you with both a theoretical background of machine learning problems as well as ensure you are refreshed on the basic mathematical formulas used in defining machine learning problems.

  1. Linear models

In this module we introduce the linear family of hypotheses, which are widely used in machine learning. The basic idea is that the target of interest is linked to a weight sum of all the data attributes. This module introduces the use of linear models, perceptron models, how to train perceptron models, and implementation of linear models.

  1. Decision trees

We will look at how a decision tree works to produce the target value from the attributes and cover elements of the information theory that underlies and motivates the development of decision trees. We introduce the ID3 decision tree training algorithm.

  1. Evaluation, error and noise

This module covers the criteria employed in the selection and optimisation process. We cover the loss function for training, the difference between training (in-sample) and generalisation (out-sample) errors, and noise.

  1. Ensemble methods

In this module, you are introduced to the idea of putting multiple learned data models together to make a complex and more powerful model. We cover resampling (bootstrapping), bagging and random forest methods, and the adaboost algorithm.

Scheduling

This course is delivered in a scheduled format over ten weeks.

Each week (during weeks 1 to 8) you will participate in an online session where you will have the chance to apply what you've learned, ask questions and hear from other participants who are taking the course with you. The workshops are led by the course facilitator.

Weeks nine and ten are planned to give you time to complete the final assignment, with support and scheduled Q&A sessions provided.

Key benefits of this microcredential

  • You will receive a combination of in-depth theoretical and practical study across the whole lifecycle of a data model.
  • You will dive deep into the theoretical design motivation and dynamics of the machine learning model and translate mathematical notions into data structures and programs to get some hands-on experience of how the models work.
  • Complete as a self-contained course, or as a potential pathway to future postgraduate study.

This microcredential aligns with the 2-credit point subject, Machine Learning Foundations (42820) in the Master of Technology (C04406). This microcredential may qualify for recognition of prior learning at this and other institutions.

Videos and materials

Machine Learning Foundations at University of Technology Sydney

From  AUD 1 595$1,228

Something went wrong. We're trying to fix this error.

Thank you for your application

We will contact the provider to ensure that seats are available and, if there is an admissions process, that you satisfy any requirements or prerequisites.

We may ask you for additional information.

To finalize your enrollment we will be in touch shortly.

Disclaimer

Coursalytics is an independent platform to find, compare, and book executive courses. Coursalytics is not endorsed by, sponsored by, or otherwise affiliated with any business school or university.

Full disclaimer.

Read more about Information Technology

A large part of the courses provides basic information so the students are not required to have any IT qualifications before enrolling. Most of the IT learning programs are also broken down into specific areas of interest, such as systems analysis, a...

Because of COVID-19, many providers are cancelling or postponing in-person programs or providing online participation options.

We are happy to help you find a suitable online alternative.