Advanced Data Analytics

University of Technology Sydney

How long?

  • 10 weeks
  • online

University of Technology Sydney


Coursalytics is an independent platform to find, compare, and book executive courses. Coursalytics is not endorsed by, sponsored by, or otherwise affiliated with any business school or university.

Full disclaimer.

Read more about Business Analytics

Business Analytics courses will introduce you to a popular and diverse profession. A business analyst is a specialist in many IT fields as well as in ...

Read more about Information Technology

Information technology is at the heart of any process connected to utilizing computers and communication systems. It is a quite broad term that is use...

Who should attend

This microcredential is accessible to participants with some background in data or those who have completed the Data Analytics Foundations microcredential.

UTS microcredentials are developed for professionals with a capacity to undertake postgraduate tertiary education.

About the course

Designed for professionals with some familiarity working with data, this microcredential combines state-of-the-art research and practical techniques in data analytics, covering the knowledge and capacity to initiate and conduct data mining research and development projects.

About this course

Advanced Data Analytics develops skills in data classification and prediction through practical activities in decision tree induction, classification by support vector machine, ensemble methods and random forest, classification accuracy and identifying issues in prediction.

Building from the Data Analytics Foundations microcredential, this course enables an exploratory data visualisation and evaluation of results.

Course Outline

This course has been designed to provide you with an applied introduction to the field of data analytics, and an orientation to its different usages. It has been designed by the UTS Faculty of Engineering and Information Technology, leveraging the Faculty's unique expertise in the area of artificial intelligence.

In this course you will meet and work with a dedicated course facilitator, who supports your learning and engagement with the teaching resources designed by the Lead Academic and a team of experts in the Faculty of Engineering and Information Technology.

There are six modules, each featuring self-study materials and facilitated online sessions.

  1. Decision trees

In this module, you will cover supervised and unsupervised machine learning, the classification and prediction process, decision trees and entropy and information gain.

  1. Evaluating classifiers

In this module, you will learn how to evaluate a classifier through studying the confusion matrix and related measures, ROC curves and bias and variance decomposition.

  1. K-NN algorithm

In this module, you are introduced to another classification and regression method. Throughout this module, you also will learn how to validate the outcomes of your models and will be introduced to some key concepts in the training of a model.

  1. Ensemble methods and random forest

An ensemble method is a learning algorithm that consolidates several machine learning models into one model. This approach constructs the decisions by training multiple classifiers and then classifies new data points by taking a vote of each of the classifier predictions. By pooling the predictions of multiple machine learning algorithms, the outcome is generally a better prediction than using a single algorithm.

  1. Support vector machines

In this module, you will learn about kernel methods and Support Vector Machines (SVMs). To understand the concept of an SVM, you first need to know some other basic terms which will be covered in this module.

  1. Neural networks

In this module, you will be introduced to the concept of neural networks, their history and types and training algorithms of neural networks.


This course is delivered in a scheduled format over ten weeks.

Each week (during weeks 1 to 8) you will participate in an online session where you will have the chance to apply what you've learned, ask questions and hear from other participants who are taking the course with you. The workshops are led by the course facilitator.

Weeks nine and ten are planned to give you time to complete the final assignment, with support and scheduled Q&A sessions available.

Key benefits of this microcredential

  • Build on your foundational data analytics skills without focusing on heavy maths or coding – this course uses a visual open-source platform (KNIME) to demonstrate and practice key concepts and models for participants without a programming background.
  • Learn to evaluate and choose between key machine learning methods and models through practical exercises.
  • Complete as a self-contained course, or as a potential pathway to future postgraduate study.

This microcredential aligns with the 2-credit point subject, Advanced Data Analytics (42822) in the Master of Technology (C04406). This microcredential may qualify for recognition of prior learning at this and other institutions.

Videos and materials

Advanced Data Analytics at University of Technology Sydney

From  AUD 1 595$1,193

Something went wrong. We're trying to fix this error.

Thank you for your application

We will contact the provider to ensure that seats are available and, if there is an admissions process, that you satisfy any requirements or prerequisites.

We may ask you for additional information.

To finalize your enrollment we will be in touch shortly.


Coursalytics is an independent platform to find, compare, and book executive courses. Coursalytics is not endorsed by, sponsored by, or otherwise affiliated with any business school or university.

Full disclaimer.

Read more about Business Analytics

What will you learn from Business Analytics courses? First of all, you will learn about the profession of a business analyst, his duties, and what such a specialist does. You will get various soft skills, such as organizing teamwork, for example, acc...

Read more about Information Technology

A large part of the courses provides basic information so the students are not required to have any IT qualifications before enrolling. Most of the IT learning programs are also broken down into specific areas of interest, such as systems analysis, a...

Because of COVID-19, many providers are cancelling or postponing in-person programs or providing online participation options.

We are happy to help you find a suitable online alternative.