Compare courses
Stanford Center for Professional Development

Introduction to Python (Foundations for Data Science)

On demand
Modules info
USD 129

How it works


Coursalytics is an independent platform to find, compare, and book executive courses. Coursalytics is not endorsed by, sponsored by, or otherwise affiliated with Stanford Center for Professional Development.

Full disclaimer.


Python is a popular and versatile programming language that allows you to transform and analyze large datasets. In this course, you will be lead through a comprehensive introduction to Python with a focus on data science applications. You will be introduced to basic syntax, programming, and commonly used packages for data manipulation and exploration. The course is meant to be accessible to beginners new to the language, enabling further study of more advanced topics.

This course consists of:

  • Lecture videos
  • Lecture companion notebooks that enable you to practice in real-time as you watch videos
  • Interactive exercise notebooks for ungraded, self-paced practice

Topics Include

  • Basic Syntax: Variables and Data Types
  • Functions
  • File Input and Output
  • Packages: Numpy, Scipy, Pandas, and Matplotlib
  • Jupyter Notebook

Course reviews

Reviews for this course are not publicly available
Fitch Learning

Fundamentals of Python Modeling in Finance

Next dates

Nov 25—26, 2019
2 days
London, United Kingdom
GBP 1295 ≈USD 1652
GBP 647 per day


This two-day course offers a short but intensive introduction to the use of Python in finance. In particular, it explores the key characteristics of this powerful and modern programming language to solve problems in finance and risk management.

Key Learning Outcomes:

  • Learn a structured method to programming via the Bento Box Method
  • Explore the benefits of using Python in practical day-to-day business activities
  • Have a hands-on experience of programming in Python to solve financial problems
  • Explore in detail how Python is used in modern Finance, Portfolio Management, Financial Derivatives and Risk Management

Introduction to Python

  • Programming in 3 Easy Steps
  • The Bento Box Method
  • Why learning a new programming language?
  • From Excel to Python
  • From VBA to Python

Python Fundamentals

  • Installing Python Packages
  • Representing and working with data: tuples, lists, dictionaries and sets.
  • Designing functions and organizing larger programs into functions.
  • Array Operations, Random Numbers, Plotting
  • Data Visualization via Matplotlib.

Applications of Python in Finance

  • On Investments
  • Example 1: Discount factors and cashflows
  • Example 2: Net Present Value (NPV) and Internal Rate of Return (IRR)
  • Example 3: Bonds: Zero-coupon and Coupon

Applications of Python in Portfolio Management

  • On Portfolio Management
  • Example 1: Modern Portfolio Theory (MPT) and the The Efficient Frontier
  • Example 2: The Capital Asset Pricing Model (CAPM)
  • Example 3: Asset Pricing Theory (APT)

Extending Python: the NumPy, SciPy and Pandas Packages

  • Why we need packages?
  • Description of NumPy.
  • Description of SciPy.
  • Description of Pandas.

Using the Packages

  • NumPy Examples: interpolation functions, matrix decompositions, computing eigenvalues, solving systems of equations and matrix inversion.
  • SciPy Examples: statistical functions, how to generate different distributions and perform
  • statistical computations.
  • Pandas Examples: working with tabular data in Python (including missing data and data alignment).

Applications of Python in Financial Derivatives

  • On Financial Derivatives
  • Example 1: Classic Black-Scholes-Merton formula
  • Example 2: Monte Carlo Simulation
  • Example 3: Binomial Trees

Applications of Python in Quantitative Risk Management

  • On Risk Management
  • Example 1: Classic Value at Risk (VaR)
  • Example 2: Mixing Statistical Distributions
  • Example 3: Principal Component Analysis

Who should attend

This course is ideal for financial analysts, business analysts, portfolio analysts, quantitative analysts, risk managers, model validators, quantitative developers and information systems professionals. There are no pre-requisites to attend this course. We expect participants to have a basic knowledge of finance and basic notions of programming.


Detailed Description
Detailed Description
Show more