Compare courses
Register
eCornell Marketing Student Story [Rachel pt. 1]
On demand
Online
USD 3600

How it works

Disclaimer

Coursalytics is an independent platform to find, compare, and book executive courses. Coursalytics is not endorsed by, sponsored by, or otherwise affiliated with eCornell.

Full disclaimer.

Description

Today’s organizations have oceans of data available to them—and those that can translate it into meaningful business insights can gain competitive advantage. The Data-Driven Marketing certificate program teaches you the essential methods of marketing research using data, as well as the analytical tools to measure the effectiveness and efficiency of your digital advertising campaigns. You’ll learn to ask the right questions and determine the most relevant data for improving sales, market share, and margins.

From market response models, customer preference measurement and product positioning, to customer lifetime value, the six two-week courses in this program cover a variety of topics that will help you harness the power of data to improve your bottom line.

Measuring Customer Preferences

To create a more customer-centric organization -- and improve sales, market share, and margins -- you need to know what your customers want. In this course, you'll use the statistical method of conjoint analysis to uncover the product attributes most influential to your customers. By simulating the market, you'll run relevant scenarios to answer questions such as: What would happen if we lowered our price, or offered quality improvements? Which customers should we go after? And, if we give our customers more of one attribute, can we give them less of another?

Analyzing Segmentation and Targeting

In this course, you'll use the statistical method of cluster analysis to meaningfully segment and target your market based on customer needs and preferences. Through interactive, applied activities, you'll analyze how customers naturally segment themselves within your market -- and how to predict and target the most profitable segments for your business. Customer data analyzed are similar to what is typically commissioned from market research firms

Using Data for Positioning Brands

To improve sales and market share, knowing what consumers want isn't enough. You also need to know what they believe your product or service, and your competitors', provides. In this course, you'll create and use perceptual maps to identify which dimensions consumers use to differentiate among products, and how they perceive your products relative to competitors'. These maps are valuable for identifying opportunities to introduce and position new products, repositioning existing products, and identifying your true competitors..

Predicting and Managing Customers' Lifetime Value

Successful customer relationship management encompasses thousands of transactions and impressions, over many years. But which customers are most worth your time and resources? How do firms determine how long they need to keep customers before they become profitable? Analyzing data (such as Big Data) allows marketers to make smarter predictions using the Customer Lifetime Value (CLV) model, which scores current and potential customers based on characteristics such as churn rate, discount rate, retention cost and forecasts of remaining customer lifetime. In this course, you'll use the CLV model to segment and target customers based on their potential long-term value, and build corresponding retention and divestment strategies.

Market Response Modeling

Segmentation and targeting is the tip of the iceberg for implementing a successful marketing strategy. Markets can be sliced and diced in infinite ways; the goal is to focus your marketing activities on customers you identify as most likely to respond and buy. In this course, you'll use statistical market response modeling to develop the right marketing mix: Determine when -- and where -- to spend money on advertising and trade promotions, and how to better forecast demand for your product or service among different customers

Optimizing Digital Advertising with Analytics

Digital advertising campaigns are an increasingly important element of most brands’ marketing mix and are designed to achieve specific goals: increase brand awareness, drive traffic to the advertiser’s website, and achieve consumer conversions. And although digital advertising generates a huge amount of data, not knowing how to interpret it could result in inefficient spending and missed opportunities.

This course introduces the use of analytics and data to measure the extent to which the goals of digital campaigns are being achieved, and thereby provides a roadmap for you to make more informed spending decisions. Through the application of various analytical tools, such as effectiveness and efficiency metrics, attribution modeling, and the design of randomized controlled trials, you—as a buyer or seller of digital advertising—will be more successful at monetizing digital assets.

You explore this content through a mix of input from industry experts, a hands-on course project, and the presentation of best practices by Cornell University Professor Sachin Gupta. Your fellow students and your instructor will also help broaden your understanding of digital advertising analytics and its impact on your advertising strategy.

KEY COURSE TAKEAWAYS

  • Optimize spend in paid search advertising.
  • Measure advertising effectiveness and efficiency using the scientific method.
  • Make budget allocation decisions by attributing sales outcomes to specific marketing channels.
  • Use conjoint analysis to measure and interpret consumer preferences.
  • Articulate a strategic rationale for customer segmentation and how segmentation fits into the process of developing marketing strategy.
  • Articulate potential uses of factor analysis.
  • Interpret a scoring model to make strategic decisions about potential customers and target segments.
  • Examine data related to customer lifetime value.
  • Develop market response models.

WHAT YOU'LL EARN

  • Data-Driven Marketing Certificate from Cornell Johnson Graduate School of Management
  • 48 Professional Development Hours (PDHs)

Who should attend

  • Marketing managers
  • Product managers
  • Analysts

Experts

Biography Sachin Gupta is Henrietta Johnson Louis Professor of Marketing at the SC Johnson Graduate School of Management. Professor Gupta''s research focuses on analytical models of marketing phenomena, including discrete choice models of consumer behavior, marketing mix models, measurement of r...

Files

Detailed Description
Detailed Description

Next dates

On demand
Online
USD 3600

How it works

Show more