Customer Analytics for Growth Using Machine Learning, AI, and Big Data

The Wharton School

How long?

  • 5 days
  • in person

The Wharton School


Coursalytics is an independent platform to find, compare, and book executive courses. Coursalytics is not endorsed by, sponsored by, or otherwise affiliated with any business school or university.

Full disclaimer.


Make sure this course is right for you.

Get unbiased reviews and personalized recommendations.

Who should attend

Senior-level managers in both B-to-C and B-to-B organizations who are responsible for influencing business decisions across marketing, finance, operations, and strategy will benefit from Customer Analytics for Growth. Additionally, executives who are responsible for interfacing with data science and the teams that collect data, those who are beginning to use available data to inform strategy and operating decisions, and those who are new to analytics will benefit from the program.

Participants are not required to have a strong math or technical background. Customer Analytics for Growth focuses on the managerial issues that intersect with analytics, including how best to convey insights from data to decision makers.

Industries that are currently exploiting business analytics include, but are not limited to, consumer packaged goods, financial services, health care/pharmaceuticals, manufacturing, media/communications technology, hardware/software technology, transportation, and logistics.

Job titles may include:

  • Chief Marketing Officer
  • Chief Information and Digital Officer
  • Chief Product Officer
  • Global Director, Pricing Strategy
  • SVP Data and Decision Sciences
  • SVP Corporate Research and Analytics
  • VP Digital Strategy
  • Managing Director
  • Director Business Intelligence
  • Director Corporate Sales Operations
  • Director Digital Marketing
  • Director Marketing Communications
  • Director Product Management
  • Director Products and Services
  • Principal Data Scientist
  • Business Intelligence Analyst
  • Marketing Research Analyst

About the course

Artificial intelligence and machine learning could be rocket fuel for your business, adding tremendous value to the entire enterprise, but only if you know how to harness and leverage them. With AI and machine learning reshaping the business landscape for numerous industries, there is increasingly high demand to bring data to life, going beyond the raw numbers to link them to strategic business initiatives.

Customer Analytics for Growth Using Machine Learning, AI, and Big Data will sharpen your analytics mindset, enabling you to bridge any knowledge gap that may exist between your data science teams and the C-suite. Here you will learn how to convert model based recommendations into actionable insights and better managerial decisions.

Program Highlights & Benefits

In Customer Analytics for Growth, you will:

  • Master how to frame managerial questions around big data and analytics
  • Select the right tools for predicting future customer behavior
  • Explore and understand the latest AI applications, including their pros and cons
  • Discover the companies that are using these new technologies most effectively
  • Gain insights into best practices for recruiting and managing data-science teams

Many companies are swimming in data, and they are spending millions to collect more. But even with new tools and algorithms to analyze and make predictions based on consumer data, it’s often still not being used effectively. Customer Analytics for Growth is for business leaders who want to cultivate an analytics-based mindset throughout their organization, and gain a deep understanding of emerging AI technologies that are rapidly changing businesses today.

In Customer Analytics for Growth, you will explore the upside — and the downside — of complex data models, and understand the importance of transparency in data collection and analysis.

The program examines customer analytics using three foundational pillars:

  • Descriptive Analytics examines the different types of customer data and how they can be visualized, ultimately helping you leverage your findings and strengthen your decision making.
  • Predictive Analytics explores the potential uses of the data once collected and interpreted. You’ll learn to utilize different modeling tools, such as regression analysis, be exposed to the latest machine learning algorithms, and estimate relationships among variables to predict future end-user behavior.
  • Prescriptive Analytics takes you through the final step: formulating concrete recommendations based on your data. These recommendations can be directed toward a variety of efforts, including pricing and social-platform outreach.

A distinctive highlight of Customer Analytics for Growth is engaging in discussions with expert practitioners from a range of industries who have experience with both business-to-consumer and business-to-business customer models. They will reveal their real-time challenges and best practices, sharing their experience with the three most common hurdles of analytics strategy — tools, talent, and metrics — discussing what tools to use when, how to build analytics teams, and what to track about your customers. Each session also includes a short, highly interactive case study that allows you to explore real-world applications.

Customer Analytics for Growth brings together a powerhouse team of Wharton faculty from operations, information, and decisions; legal studies and business ethics; marketing; and statistics. They guide you through the most current theories and best practices for designing and implementing a data-analysis strategy, while continuously linking the learning to your real-life challenges.

The exceptional multidisciplinary learning journey will also give you a front-row seat to the powerful research and thought leadership of Wharton Customer Analytics (WCA), the world’s preeminent academic research center focusing on the practice of data-driven business decision making. This offers an advantage you will not find anywhere else.

Capstone Project: A Live Case Study

The Customer Analytics for Growth Capstone gives you the opportunity to apply what you've learned about how to make data-driven decisions to a real business challenge. Working in groups, you will leverage skills within your group to identify how to successfully use data to create cutting-edge, customer-focused marketing practices.

In these sessions, groups will use real-world data to apply customer analytics to marketing challenges, starting with data collection and data exploration, and continuing all the way to data-driven decisions. After completing your group project, you will be asked to reflect on how to identify scenarios from your own company or business, where there could be benefits from the innovative and effective data-driven practices learned during the week.

Session topics include:

  • The Future of Marketing Science: Big Data, New Data, Better Science
  • How AI and Machine Learning Are Changing Customer Analytics
  • Data Science: A Team Sport (Building the Analytics Team)
  • Customer Value Analysis
  • Business Experiments
  • Story Telling Through Analytics
  • Predictive Analytics with Machine Learning
  • Pricing Analytics
  • Generating Wisdom from Data: Lessons Learned from Sports Analytics


Peter Fader

Peter S. Fader is the Frances and PeiYuan Chia Professor of Marketing at the Wharton School of the University of Pennsylvania. His expertise centers around the analysis of behavioral data to understand and forecast customer shopping/purchasing activities. He works with firms from a wide range of ...

Jagmohan Raju

Professor Jagmohan S. Raju is the Joseph J. Aresty Professor and Director of the WhartonIndian School of Business Program. He serves as the Vice Dean of the Wharton Executive Education program. Professor Raju is internationally known for his research on pricing strategies, coupon programs, managi...

Eric Bradlow

An applied statistician, Eric uses high-powered statistical models to solve problems on everything from Internet search engines to product assortment issues. Specifically, his research interests include Bayesian modeling, statistical computing, and developing new methodology for unique data struc...

Raghuram Iyengar

Professor Raghu Iyengar's research interests fall in two domains: pricing and social influence. In the area of pricing, his work focuses on the impact of multipart pricing schemes on consumer response. The success of such pricing mechanisms to extract consumer surplus depends on how consumers res...

Abraham Wyner

Professor Wyner received his Bachelors degrees in Mathematics from Yale University, where he graduated Magna Cum Laude with distinction in his major. He was the recipient of the Stanley Prize for excellence in Mathematics. His PhD in Statistics is from Stanford University, where he won a National...

Lyle Ungar

Professor of Bioengineering, Professor of Computer and Information Science, the School of Engineering and Applied Science; Professor of Genomics and Computational Biology, Perelman School of Medicine; Professor of Operations, Information and Decisions, the Wharton School; Professor of Psychology,...

Zachery Anderson

Zachery is the chief analytics officer and senior vice president at Electronic Arts (EA), the world’s largest video game company. He is responsible for leading consumer insights, UX research, data science, studio analytics, and marketing analytics for EA. His team uses in-game behavioral data, tr...

Neil Hoyne

Acclaimed globally for exploration of paradigm-shifting analytics that illuminate our understanding of customer relationships, Neil is sought internationally as a keynote speaker, a lecturer at top business schools, and a contributor in multiple patents. Further, as Google’s chief analytics evang...

Videos and materials

Customer Analytics for Growth Using Machine Learning, AI, and Big Data at The Wharton School

From  $11,280

Something went wrong. We're trying to fix this error.

Thank you for your application

We will contact the provider to ensure that seats are available and, if there is an admissions process, that you satisfy any requirements or prerequisites.

We may ask you for additional information.

To finalize your enrollment we will be in touch shortly.


Coursalytics is an independent platform to find, compare, and book executive courses. Coursalytics is not endorsed by, sponsored by, or otherwise affiliated with any business school or university.

Full disclaimer.

Because of COVID-19, many providers are cancelling or postponing in-person programs or providing online participation options.

We are happy to help you find a suitable online alternative.